

Los Angeles River Master Plan Update

Special Subcommittee Workshop on LA River Hydrology + Hydraulics March 20, 2019, 9:00 a.m. to 12-noon

Meeting Summary

Location

Los Angeles River Center and Gardens 570 W Ave 26, Sierra Madre Room Los Angeles, CA 90065

Attendees

Subcommittee Members

Katie Doherty, City of Los Angeles Bureau of Engineering Edward Belden, City of Los Angeles Mayor's Office Michael Affeldt. City of Los Angeles Mayor's Office Stephen Mejia, Friends of the LA River (FoLAR) Amanda Wagner, Heal the Bay Lucy Rieves, Heal the Bay Mia Lehrer, LA-Mas Guadalupe Duran-Medina, Los Angeles County 1st District Chris Perry, Los Angeles County 5th District Stacy Farfan, Los Angeles Department of City Planning Anthony Nercessian, Los Angeles Department of Water and Power Rafael Villegas, Los Angeles Department of Water and Power Manuel Aguilar, Los Angeles Department of Water and Power Melissa Von Mayrhauser, Los Angeles Waterkeeper Lauren Cencic, Metropolitan Transport Authority Veronica Padilla-Campos, Pacoima Beautiful Joseph Gonzalez, River and Mountains Conservancy Sarah Rascon, Santa Monica Mountains Conservancy Joe Edmiston, Santa Monica Mountains Conservancy Shona Ganguly, The Nature Conservancy Robin Mark, The Trust for Public Land Chris Solek, US Army Corps of Engineers Eileen Alduenda. Council for Watershed Health Brian Baldauf, Mountains Recreation and Conservancy Authority

Los Angeles County Public Works/Flood Control District Staff

Genevieve Osmeña, Los Angeles Flood Control District Iraj Nasseri, Los Angeles Flood Control District

Carolina Hernandez, Los Angeles Flood Control District Christine Wartman, Los Angeles Flood Control District Daniel B. Sharp, Los Angeles Flood Control District Donna Diaz, Los Angeles Flood Control District Mark Beltran, Los Angeles Flood Control District Ernesto Rivera, Los Angeles Flood Control District Helen To, Los Angeles Flood Control District Youssef Chebabi, Los Angeles Flood Control District Hoan Tang, Public Works Julian Juarez, Public Works Marcela Benavides, Public Works

Other County Staff/ICT Members

Rita Kampalath, Chief Sustainability Office

Consultant Team

Mark Hanna, Geosyntec Al Preston, Geosyntec Nami Tanaka, Geosyntec Paul Senker, Geosyntec Jose Avina, Geosyntec Yoshi Andersen, Geosyntec Shant Oganesian, Geosyntec Mustafa Ghuneim, Geosyntec Jessica Henson, OLIN Nate Wooten, OLIN Diana Jih, OLIN Joan Isaacson, Kearns & West

1. Welcome and Introductions

Genevieve Osmeña of Public Works and Project Manager of the LARMP Update opened the workshop with a round of introductions for all participants, explaining the need for a workshop to establish a common understanding of the hydrology and hydraulics (H&H) considerations of the LA River.

2. Overview

- Hydrology
- Hydraulics
- LA River Watershed and System

Dr. Mark Hanna (Geosyntec) provided an overview of the hydrology and hydraulics (H&H) of the LA River. He explained the difference between hydrology and hydraulics respectively as how water moves throughout the watershed versus the structures that move it, and he introduced key examples of each category, such as topography and vegetation cover for hydrology, and spreading grounds and flood channels for hydraulics. Dr. Hanna also reviewed the factors that directly impact the channel capacity of the LA River, including cross-sectional area, depth, roughness, and slope. An animation was developed and presented showing how dry soils can absorb water much greater than already saturated soils

Hanna then discussed the types of storms conveyed by the LA River, introducing the magnitude of precipitation that statistically occurs at frequencies ranging from once per year to once every five-hundred years. Hanna noted that the storm precipitation depth increases logarithmically (i.e., progressively more slowly) as the return period of the storm increases.

Dr. Al Preston (Geosyntec) addressed the impact of climate change on storm frequency and intensity, presenting results from recent research that indicate potential for increased storm intensities. Dr. Iraj Nasseri (LA County Flood Control District) gave an overview of the complexities of the County flood system and how flood infrastructure is typically designed based on a 50-year flow for a burned watershed. Dr. Nasseri noted that these flow rates may increase in the future, or equivalently that the design events may become more frequent. Dr. Nasseri outlined efforts of the County pro-actively working with researchers at UCLA to understand and quantify potential changes.

Hanna concluded the overview by displaying hydrographs (modeled by HEC-HMS) at Glendale Narrows and Firestone Blvd for 2-year and 100-year storm events. The hydrographs at both locations and the entire LA River were then animated, demonstrating where and when the design channel capacity is exceeded during the 100-year event.

3. Timeline of the LA River

- How did we end up with current system?
- History of flooding and floodplains
- Current protection level / flood risk
- Group brainstorm "what are some potential solutions to reduce flood risk?"

Dr. Hanna explained the historic floodplains and flow paths of the LA River, pointing out the drastic shift of the mouth of the River from Venice to Wilmington in 1862, as well as the location and span of the floodplains. Hanna then reviewed the series of catastrophic flood events during the 20th century that prompted the channel concretization and

expanded flood control system up until the present today. News footage (from ABC) of a recent large storm from the current water year (Feb 2, 2019) was then shown and comparisons of measured rainfall depth were made, indicating that the storm was approximately a 2-year event.

The discussion of the past and present conditions of the LA River then concluded with a brainstorm session during which the LARMP Update consultant team invited ideas from the workshop participants for ways to reduce flows into the channel or to increase channel capacity (both sides of the approach to reducing flood risk). Prominent discussions resulted regarding how the overarching LARMP goals may be addressed by the H&H considerations as well as how channel capacity may be increased with changes in channel shape (e.g., widening). The workshop participants offered the following ideas to increase channel capacity and reduce flows:

Increase Capacity:

- Floodplain reclamation
- Deepen channel
- Raise levees
- Smoother channel
- Add concrete
- Change cross section
- Diversions

Reduce Flows:

- Permeability (surface, subsurface)
- Cisterns
- Stormwater capture
- Larger scale basins
 - Find storage
 - o Distributed, central, small public yards
- Wetlands (constructed)
- Manage runoff at the source
 - LID, nature based (where is impact the greatest top of the watershed)
- Green streets
- Prioritize subwatersheds by need
- Consider public/private differences for development goals

4. Tools and Analyses

- Local scale hydrology
 - HydroCalc
- Watershed scale hydrology models
 - LSPC
 - HEC-HMS
- Hydraulics
 - Manning's Equation
 - HEC-RAS

Following the brainstorming session, Dr. Iraj Nasseri of LA County Flood Control District introduced the hydrologic and hydraulic models used by public agencies and consultants in LA County. HydroCalc is based on the modified rational method and works well for smaller sub-watersheds. For larger watersheds, more complex hydrologic models are used including Loading Simulation Program in C++ (LSPC) and the USACE HEC-HMS. These larger, more complex models are required to inform channel hydraulics analyses accounting for conditions within the entire watershed. Channel hydraulics are analyzed using Manning's Equation and the USACE HEC-RAS model. Dr. Nasseri emphasized that calibration is necessary for these models to effectively estimate runoff (hydrology) and channel performance (hydraulics).

5. Solutions and Opportunities

- Evaluations
 - Solutions, Opportunities, Ideas
 - HydroCalc
 - Glendale Narrows
 - Lower Los Angeles River

Dr. Hanna introduced the commonly utilized LID/BMPs for addressing water quality, water supply, and flood in the LA River region, highlighting the significant difference in the size of different projects. He compared the 5,186 acre-feet of storage that must be implemented for the Upper LA River EWMP's water quality targets to the Hansen Basin and Sepulveda Basins that together store over 50,000 acre-feet to control peak flows during large storm events.

Hanna described exceedance probabilities and described a comparison of historical peak flow rates between urbanized and non-urbanized subwatersheds within the LA River watershed. The comparison showed how urbanization over time significantly increases

peak flow rates of the smaller more frequent rainfall events but for the larger, less frequent events, runoff from urbanized areas does not show much difference (Figure 1).

Figure 1. Exceedance Probabilities of Peak Flow Rates in Urbanized and Non-Urbanized Watersheds Over Time

The HydroCalc model was then further introduced as a means of understanding the response of runoff to hydrologic conditions within small urban areas. During a working session break, each table of participants was assigned one of six representative locations within the LA River watershed, where they had the opportunity to operate HydroCalc firsthand with guidance from consultant team facilitators. Participants viewed how much a 50% reduction of impervious area within a drainage area reduces peak runoff flow rates from both a 2-year and 100-year storm event. The results showed that the reduction in imperviousness significantly reduced 2-year peak flows but generally reduced 100-year flows by a much less (Figure 2).

Figure 2. Resulting Peak Flow Reductions from HydroCalc Breakout Session

Following the HydroCalc breakout session, the mitigation of peak flows by reduced imperviousness (to represent capture and detention of stormwater by LID/BMPs) was further explored with results of long-term hydrologic models using LSPC as well as design storm events using HEC-HMS. Both models showed that aggressive implementation of LID/BMPs only slightly reduced (i.e., by a few percent) the largest peak flows during the 100-year event.

This led to an overview of how larger managed centralized storage can reduce peak flows, showing that increasing the size of existing basins or adding extra basins could provide some moderate additional reduction of peak flows. It was noted that there would be challenges enlarging existing basins and creating new large basins within the urban environment at hydrologically effective locations.

Various additional alternatives were also discussed such as widening of the channel, raising the height of levees, adding bypass tunnels, refurbishing the existing channel (back to original design conditions), and a combination of the aforementioned ideas.

For portions of the Glendale Narrows, a combination of ideas, such as channel refurbishment, a bypass tunnel, and a 28% reduction of imperviousness (corresponding to the 2037 ULAR EWMP target) could increase existing protection from a 4-year return period to above a 100-year return period (assuming bridge constrictions are removed as well). An animation was also presented (Figures 3 and 4) that indicated that this approach alone would not be enough to achieve the 100-year level of protection throughout the *entire* Glendale Narrows (Figure 4).

Figure 3. Glendale Narrows animation frame at hour 14 of 100-year storm event for Baseline Imperviousness, 28% Imperviousness Reduction (representing full implementation of 2037 EWMP goals), 28% Imperviousness Reduction + Refurbishment, and 28% Imperviousness Reduction + Refurbishment + Bypass Tunnel. Pink indicates exceedance of channel capacity. The animation indicates that the slight flow reduction for 28% Impervious Reduction provides limited improvement in flood risk reduction, compared to the larger subsequent improvements due to channel Refurbishment and a Bypass Tunnel.

Figure 4. Glendale Narrows animation frame at hour 17 (near peak flow) of 100-year storm event for Baseline Imperviousness, 28% Imperviousness Reduction (representing full implementation of 2037 EWMP goals), 28% Imperviousness Reduction + Refurbishment, and 28% Imperviousness Reduction + Refurbishment + Bypass Tunnel. Pink indicates exceedance of channel capacity and purple indicates flow rate within 10% of channel capacity. The animation indicates that the 28% Impervious Reduction + Refurbishment + Bypass Tunnel enables the 100-year peak flow to be conveyed throughout much of the Glendale Narrows, but some reaches are still above channel capacity.

6. Wrap up

Questions and comments were taken from the audience throughout the conversation, including discussions of how hydrology and hydraulics (i.e., flood risk mitigation) is only one of the multi-benefits being considered and how the nine goals of the Master Plan integrate with one another.

Technical issues on the modeling were discussed, including how the HEC-HMS model calculates rainfall run-off (including soil infiltration and saturation) and routing to and through the channels, and that these channel flow rates are then provided to HEC-RAS

to enable more detailed assessment of channel and bridge hydraulics. Additionally, it was pointed out that HEC-HMS assumes that all flow is conveyed down the channel, even when channel capacity is exceeded. As such, the flows used for the analyses and design of capacity in the Lower River assume that the Glendale Narrows have adequate capacity, with the important corollary being that addressing deficiencies in the Glendale Narrows (e.g., to meet 100-year protection) would not compromise the >100-year protection of the Lower River.

There was much discussion about differing types of "Low Impact Development" techniques and in real-time type systems that could help manage flows when needed (i.e., to "shave" the peak flows of the hydrograph). While there may be some benefit to this approach, it would be extremely difficult to implement on a distributed basis. In addition, the volumes of LID/BMPs used for water quality are an order-of-magnitude lower than the large basins (i.e., Sepulveda and Hansen) used for flood risk mitigation and the structures that already operate to manage the peak flows.

Other potential solutions were mentioned, including the use of the 5 Freeway to convey peak flows on the extreme rare occurrences. The team noted that 2D modeling developed by the US Army Corps of Engineers in 2016 indicated that this may already occur to some extent, but this is not desirable since it would impede emergency services and evacuations.

Flood plain buy-back and channel widening were discussed, including raising the question of cost of land buy-back versus cost of bypass tunnel, and furthermore, whether an increase in width of 2 to 3 times would still be required if widening is already considered in combination with other strategies, such as channel refurbishment. The team noted that there would still be complexities that would likely require widening over extended distances to be effective, as well as lengthening of bridges.

Appendix A: Sign-In Sheet

Los Angeles River Master Plan Update Hydrology and Hydraulics Workshop March 20, 2019 • 9 a.m. to 12 p.m. Sign in Sheet LOCATION Los Angeles River Center and Gardens Mountains Recreation & Conservation Authority Sierra Madre Room 570 W Ave 26 #100, Los Angeles, CA 90065

NAME OF AGENCY	PRIMARY MEMBER	INITIALS
Chief Sustainability Office	Rita Kampalath	
City of Downey	Sean Ashton	
City of Los Angeles Bureau of Engineering	Katy Doherty	KAD
City of Los Angeles Bureau of Sanitation	Susie Osuna	
City of Long Booch	Lena Gonzalez	
City of Long Beach	Jennifer Kumiyama	
	Edward Belden	TB
City of Los Angeles (Mayor's Unice)	Michael Affeldt	m
City of Pouth Coto	Arturo Cervantes	
City of South Bate	Gladis Deras	
East Yard Communities for Environmental Justice	Alessandro Negrete	
Friends of the LA River (FoLAR)	Stephen Mejia	SM
Haal the Day	Amanda Wagner	AW
real the bay	Lucy Rieves	LR.
LA-Mas	Mia Lehrer	V
Los Angeles Business Council	Mary Leslie	
Los Angeles City/County Native American Indian Commission	Rudy Ortega	
Los Angeles County 1st District	Guadalupe Duran-Medina	
Los Angeles County 3rd District	Virdiana Velez	
Los Angeles County 5th District	Chris Perry	CP
Los Angeles County Bicycle Coalition	Lyndsey Nolan	
Los Angeles Department of City Planning	Stacy Farfan	4F
Lee Angeles Department of Water and Power	Anthony Nercessian	ATTY
Lus Angeles Department of water and rower	Rafael Villega	RV
		<i>'</i>

Los Angeles River Master Plan Update Hydrology and Hydraulics Workshop March 20, 2019 - 9 a.m. to 12 p.m. Sign in Sheet LOCATION

Los Angeles River Center and Gardens Mountains Recreation & Conservation Authority Sierra Madre Room 570 W Ave 26 #100, Los Angeles, CA 90065

NAME OF AGENCY	PRIMARY MEMBER	INITIALS,
	Carolina Hernandez	40XX
Los Angeles Flood Control District	Christine Wartman	ĉŵ
	Daniel B. Sharp	
	Donna Diaz	BD-
	Keith Lilley	
Los Angeles Flood Control District	Mark Beltran	MB
Los Angeles Waterkeeper	Bruce Reznick	
	Helissa Von Mayhauser	MVM
Metropolitan Transportation Authority	Lauren Cencic	C
Mountains Recreation & Conservation Authority	Joe Edmiston	,
Pacoima Beautiful	Veronica Padilla-Campos	XP
Public Works	Edel Vizcarra	υ
	Jennifer Aborida	
	Julian Juarez	JJ
	Marcela Benavides	MB.
Rivers and Mountains Conservancy	Joseph Gonzalez	23
Santa Monica Mountains Conservancy	Sarah Rascon	El
Sierra Club Long Beach Area - 11 Cities	Gabrielle Weeks	
The Nature Conservancy	Shona Ganguly	SU
The Trust for Public Land	Robin Mark	RN
US Army Corps of Engineers	Chris Solek	25

Los Angeles River Master Plan Update Hydrology and Hydraulics Workshop March 20, 2019 • 9 a.m. to 12 p.m. Sign in Sheet LOCATION Los Angeles River Center and Gardens Mountains Recreation & Conservation Authority Sierra Madre Room 570 W Ave 26 #100, Los Angeles, CA 90065

NAME OF AGENCY	PRIMARY MEMBER	INITIALS
LACRO	GENEVIEVE OSMENA	GO
LACECO	YOUSSEG OTTERABL	YC,
LACDAW	112AJ NASSERI	1N
Ч	Expect Divers	en
le le	Hellen To	7C7.
UN		,
IACDPW	Hoan Tanc	HT
LADNP	Manuel Aquilar	MA.
LADUP	Anthony Nercessian	ATN
AUNC	Kumm	WB
CWH	EILER AZPUENDA	40
LACDPW	Dan Sharp	Des
MECA	BULIAN BALDAUR	1882

Appendix B: Photos from Workshop

Appendix C: Notes from Brainstorming for 'Increase Channel Capacity' and 'Reduce Flows'

INCREASE CAPACITY FLOODPLAIN RECLAIMATION Deepen Channel RAISE Levees SMOOTHER CHANNels CONCRETE. CHANGE CRUSS SECTION -1->1

2 MANAGE RUNDER at the source - LID, NATURE BASED (WHEre is impact queatest. TOP OF WAtersho D) Green Streets · Pribritize subwatershads *Consider public/private differences for development goals

Appendix D: H&H Workshop Slides

LOS ANGELES RIVER MASTER PLAN UPDATE

Hydrology and Hydraulics Workshop

20 March 2019

WELCOME

OUTLINE

LA RIVER WATERSHED	TIMELINE OF THE LA RIVER	TOOLS AND ANALYSES	SOLUTIONS AND OPPORTUNITIES	WRAP UP
• Hydrology	• 1850-2019	• HydroCalc	• Evaluations	• Discussion
• Hydraulics • LA River	 How Did We Get Here? Historical Flood Mapping February 2, 2019 Storm Current Protection Level and Flood Risk Brainstorming Ideas 	 Loading Simulation Program in C++ HEC Hydrologic Modeling System Manning's Equation HEC River Analysis System 	 Worksession Breakout Modeling the Theories Ourselves Advanced Modeling 	 What Have We Learned? What Needs More Study/Analysis? Other Resources

LA RIVER HYDROLOGY AND HYDRAULICS (H&H)

WATERSHED CONDITIONS

- Topography
- Geology & Soils
- Vegetation Cover & Land Use
 Channels
- Climate/Precipitation

INFRASTRUCTURE

- Spreading grounds
- Detention basins
- Storm Drains

HYDROLOGY AND HYDRAULICS

THE HYDROLOGICAL CYCLE

HYDROLOGY AND HYDRAULICS

THE LA RIVER WATERSHED

THE LA RIVER WATERSHED

Section cut at the Rio Hondo Confluence

Flood Control Basins

Spreading Grounds Debris Basins

- Debris Ba
 Levees
- Storm Drains
- Dams
- Rivers

Source: LA County GIS Portal, Google Earth, Geosyntec

Source: Geosyntec & OLIN

SOIL-WATER PROCESSES

Infiltration rate of soil decreases as it becomes saturated

Overland Flow

Geosyntec, OLIN

HYDRAULICS - CHANNEL CAPACITY

LOWER CAPACITY

HIGHER CAPACITY

AREA

DEPTH Hydraulic radius

ROUGHNESS Manning's n

HYDROLOGY AND HYDRAULICS

HYDRAULICS - BRIDGES

Los Feliz Blvd on 2 February 2019

Upstream of Bridge

Downstream of Bridge

LA RIVER WATERSHED IMPERVIOUSNESS

0% Impervious

100% Impervious

Source: LA County GIS Data Portal, NLCD 2011 Impervious Surface

HYDROLOGY AND HYDRAULICS

85TH PERCENTILE 24-HOUR RAINFALL DEPTH

an Nuvs

BURBANK

S ANGELES

GLENDALE

SOUTH

COMPTON

15 BELL 14 GARDENS

LONG BEACH

Commonly used for water quality design

85 percent of storms are less than or equal to the 85th percentile rain event.

Total Rainfall (inches)

- ----- 0.95 1.20
- 1.20 1.45

STORM PROBABILITY

Defining the 100 year storm:

- A storm that happens once every 100 years on average.
- A storm that has a 1% probability of happening in any given year.
- Two 100-year events can happen in back-to-back years or even the same year.
- Over 30 years (i.e., the length of standard home mortgage), the probability of having a 100-year event is 25%.
- Climate change is likely to increase the frequency of extreme events.

Incidence of the 10-year flood for the Embarras River at Ste. Marie, IL (03345500). The variability in time between "10-year floods" ranges from 4 to as many as 28 years between floods.

Source: Modified from 100-Year Flood-It's All About Chance, USGS, April 2010, https://pubs.usgs.gov/gip/106/pdf/100-year-flood-handout-042610.pdf.

HYDROLOGY AND HYDRAULICS

LA RIVER WATERSHED MEAN ANNUAL PRECIPITATION 1981-2010

38.7 in / 983 mm

• Mt Wilson

1-YEAR STORM PRECIPITATION OVER 24 HOURS

N 35 35 37 37 37 37 38

Mt. Wilson 3.7 in

23

0

Los Angeles - USC Downto 1.5 in O

LOS ANGELES

23.0 in / 584 mm

Source: Los Angeles County GIS Data Portal, Rainfall Intensity, 2011

HYDROLOGY AND HYDRAULICS

2-YEAR STORM PRECIPITATION OVER 24 HOURS

23.0 in / 584 mm

Source: Los Angeles County GIS Data Portal, Rainfall Intensity, 2011

5-YEAR STORM PRECIPITATION OVER 24 HOURS

23.0 in / 584 mm

Max Rainfall (9.4 in / 239 mm) Min Rainfall (1.5 in / 38 mm) 0.0 in / 0 mm Source: Los Angeles County GIS Data Portal, Rainfall Intensity, 2011

HYDROLOGY AND HYDRAULICS

10-YEAR STORM PRECIPITATION OVER 24 HOURS

23.0 in / 584 mm

— Max Rainfall (11.5 in / 293 mm)

— Min Rainfall (1.8 in / 47 mm)

0.0 in / 0 mm

Source: Los Angeles County GIS Data Portal, Rainfall Intensity, 2011

25-YEAR STORM PRECIPITATION OVER 24 HOURS

Reseda

BURBANK

GLENDALE

Park

Mt. Wilson 11.6 in

0

HYDROLOGY AND HYDRAULICS

0

50-YEAR STORM PRECIPITATION OVER 24 HOURS

23.0 in / 584 mm

Max Rainfall (16.1 in / 410 mm) o

Min Rainfall (2.5 in / 66 mm)

0.0 in / 0 mm
100-YEAR STORM PRECIPITATION OVER 24 HOURS

Mt. Wilson 14.8 in

0

BURBANK

GLENDALE

HYDROLOGY AND HYDRAULICS

0

0.0 in / 0 mm

500-YEAR STORM PRECIPITATION OVER 24 HOURS

23.0 in / 584 mm Max Rainfall (22.6 in / 574 mm)

- Min Rainfall (3.6 in / 92 mm)

0.0 in / 0 mm Source: Los Angeles County GIS Data Portal, Rainfall Intensity, 2011

STORM RETURN PERIODS

24-hour Precipitation Depth versus Return Period

Source: Los Angeles County GIS Data Portal, Rainfall Intensity, 2011

EXTREME EVENTS HAPPEN

SUPERSTORM SANDY Source: Jolliffe, R., Flickr User, 2012, https://flic.kr/p/dpcGmB HURRICANE HARVEY Source: Chandler, J., Flickr User, 2017, https://flic.kr/p/Y487SD

Los Angeles Times

5418

This could leave us all wet California's 'other big one' - a mega-storm of biblical

scope - could swamp cities in the L.A. Basin, experts say Whittier Narrows Dam

ELECTION 2020

20190218-stor

HYDROLOGY AND HYDRAULICS

CLIMATE CHANGE

Current rainfall design frequencies may underestimate future climate conditions.

Source: Modified from AghaKouchak, Amir, Elisa Ragno, Charlotte Love, and Hamed Moftakhari. (University of California, Irvine). 2018. Projected changes in California's precipitation intensity-duration-frequency curves. California's Fourth Climate Change Assessment, California Energy Commission. Publication Number: CCCA4-CEC-2018-005, Geosyntec, OLIN

ANALYSIS LOCATIONS

Section at Glendale Narrows (River Mile 29)

Section at Firestone Blvd (River Mile 13)

EXISTING 2-YEAR STORM EVENT HEC-HMS Model: Glendale Narrows (River Mile 29)

HYDROGRAPH 19600 cfs 0+ 16 hours

CHANNEL SECTION

Ñ

apacity

urce: Geosyntec, OLIN

Q&AAND DISCUSSION

TIMELINE OF THE LA RIVER

HOW DID WE GET HERE?

Canoga

ALLAN NO ALLAN

er-Its Life Death and Possible Rehirth " 2001 California State Univ

Reseda

ental Geography Lab, Historical Ecology, 2008, Ge

Van Nuys

BURBANK

LOS ANGELES

GLENDALE

COMP

GARDE

LONG BE

HYDROLOGY AND HYDRAULICS

HISTORICAL FLOODING AND RIVER PATHS

Areas Subject to Inundation
 Historical River Paths

ed on Blake Gumprecht, "The Los Angeles Ri

HISTORICAL RAINFALL EVENTS

- Annual average rainfall (Downtown City of Los Angeles)
- Major storm and flooding events
- X Major droughts

Source: Western Regional Climate Center, Cooperative Climatological Data Summaries, 2018 & County of Los Angeles Chief Executive Office's Office of Emergency Management, History of Floods, Mudslides, Debris Flows, Landslides in Los Angeles County Operational Area, 2012, https://ceo.lacounty.gov/wp-content/uploads/OEM/HazardsandThreats/Landslides/HAZARDS%20AND%20THREAT%20FLOODS%20-%20MUDSLIDES%20-%20LANDSLIDES%20HISTORY,pdf, Geosyntec, OLIN

45

1969 FLOOD

LA River at Los Feliz Boulevard

LA River bridge damage (location unknown)

HYDROLOGY AND HYDRAULICS

House along Topanga Canyon, Santa Monica Mountains

San Gabriel River below the Sante Fe Dam

1877 URBAN FOOTPRINT

N 52

Historical Urban Footprint

Source: Angel, S., J. Parent, D. L. Civco and A. M. Blei, 2010. Atlas of Urban Expansion, Cambridge MA: Lincoln Institute of Land Policy

1907 URBAN FOOTPRINT

Park

Reseda

Van Nuvs

Sherman Oaks BURBA

LOS ANGELES

LOS ANGELES

GLENDALE

BELL

SOUTH

COMPTON

Historical Urban Footprint

HYDROLOGY AND HYDRAULICS

1937 URBAN FOOTPRINT

Source: Angel, S., J. Parent, D. L. Civco and A. M. Blei, 2010. Atlas of Urban Expansion, Cambridge MA: Lincoln Institute of Land Policy

Historical Urban Footprint

Source: Angel, S., J. Parent, D. L. Civco and A. M. Blei, 2010. Atlas of Urban Expansion, Cambridge MA: Lincoln Institute of Land Policy

54

N 53

1950 URBAN FOOTPRINT

Historical Urban Footprint

HYDROLOGY AND HYDRAULICS

1970 URBAN FOOTPRINT

Source: Angel, S., J. Parent, D. L. Civco and A. M. Blei, 2010. Atlas of Urban Expansion, Cambridge MA: Lincoln Institute of Land Policy

1877
1907
1937
1950
1970

Source: Angel, S., J. Parent, D. L. Civco and A. M. Blei, 2010. Atlas of Urban Expansion, Cambridge MA: Lincoln Institute of Land Policy

Ñ

LOS ANGELES

LOS ANGELES

2010 URBAN FOOTPRINT

Historical	Urban	Foot	print
1000			

ource: Angel, S., J. Parent, D. L. Civco and A. M. Blei, 2010. Atlas of Urban Expansion, Cambridge MA: Lincoln Institute of Land Policy

HYDROLOGY AND HYDRAULICS

NEARLY ALL OF THE LA RIVER CORRIDOR IS DEVELOPED

Developed Land Cover of the LA River Watershed	2001	2006	2011	
Developed, Open Space	11.1%	10.7%	10.4%	
Developed, Low Intensity	16.3 %	15.9 %	15.8%	
Developed, Medium Intensity	25.4 %	26.0 %	26.3 %	
Developed, High Intensity	8.6 %	9.0 %	9.2 %	

N 57

LOS ANGELES

LOS ANGELES

LA COUNTY POPULATION AND DEVELOPMENT

— Population (LA County)

Percent Impervious (LA River Watershed)

Source: Cheyenne Cummings, "Analysis and Implications of Impervious Surface Change Due to Urbanization in the Los Angeles River" (master's thesis, California State University Dominguez Hills, 2016). "Historical General Population City & County of Los Angeles", Los Angeles Almanac, 1850-2010, http://www.laalmanac.com/population/po02.php

HYDROLOGY AND HYDRAULICS

HOW DID WE GET HERE?

EC

CONTEXT - RECENT STORM (FEB 2, 2019)

ABC News 7, Rain Swollen Los Angeles River Roars in Glendale: https://abc7.com/weather/video-rain-swollen-los-angeles-river-roars-in-glendale/5118212/

HYDROLOGY AND HYDRAULICS

FLOW RATES ON 2 FEBRUARY 2019, 1:37 PM

Source: Los Angeles County Area Streamflow Data, Accessed Feb 2, 2019, http://resreg.spl.usace.army.mil/cgi-bin/gMap.cgi?larF

HOW MUCH RAIN FELL?

Source: Los Angeles County Area Streamflow Data, Accessed Feb 2, 2019, http://resreg.spl.usace.army.mil/cgi-bin/gMap.cgi?larF

2-YEAR STORM PRECIPITATION OVER 24 HOURS

24 HOURS

HYDROLOGY AND HYDRAULICS

HOW DID WE GET HERE?

Mt. Wilson 5.1 in

0

CURRENT **PROTECTION LEVEL**

Level of Protection (interpolated)¹ LOS ANGELES < 10 yr < 50 yr < 100 yr > 100 yr Level of Protection (point data)^{2,3} **–** < 10 yr ○ < 50 yr < 100 yr</pre> ● > 100 yr Footnotes: Level of channel protection within ARBOR Study reaches from U.S. Army Corps of Engineers (USACE): Los Angeles District. 2015. Los Angeles River Ecosystem Restoration Integrated Feasibility Report, Final Feasibility Report and Environmental Impact Statement/Environmental Impact Report, Appendix E. Table 17: Original Design Discharge and Existing Channel Capacity. 2. Level of channel protection from downstream of Sepulveda to upstream of ARBOR Study reaches and downstream of ARBOR Study reaches to Rio Hondo confluence Interpolated from point locations within USACE: Los Angeles District. 1981. Los Angeles County Drainage Area: Review, Part I Hydrology Technical Report: Base Conditions. Plate 4: Levels of Protection Base Conditions. 3. Level of channel protection from Mondo confluence to Pacific Ocean Interpolated from point locations within USACE: Los Angeles District. 1999. Los Angeles County Drainage Area: Review, Part II Hydrology Rechnical Base Conditions. 3. Level of channel protection from Rio Hondo confluence to Pacific Ocean Interpolated from point locations within USACE: Los Angeles District. 1999. Los Angeles County Drainage Area: Review, Part II Hydrology Report. Base Conditions.

URBANK

GLENDALE

VERNON

SOUTH

NG BEACH

N 67

Source: Geosyntec, OLIN

Q & A AND DISCUSSION

REDUCE FLOWS INTO THE CHANNEL

INCREASE CHANNEL CAPACITY

TOOLS AND ANALYSES

HYDROLOGY & HYDRAULICS MODELING TOOLS

71

HYDROLOGY AND HYDRAULICS

H&H MODELING TOOLS

	HYDROLOGY			HYDRAULICS		
	UNIT HYDROLOGY	UNIT HYDROLOGY LARGER WATERSHED CHANNELS		NNELS		
	HYDROCALC	LSPC HEC-HMS		MANNING'S	HEC-RAS	
NAME	HydroCalc	Loading Simulation Program C++	Hydrologic Engineering Center - Hydrologic Modeling System	Manning's Equation	Hydrologic Engineering Center - River Analysis System	
DEVELOPER	LA County Public Works	LA County Public Works	US Army Corps of Engineers	Robert Manning	US Army Corps of Engineers	
DATE	2018	2013	2018	1889	2018	
PURPOSE	Modified Rational Method for local scale flood and drainage analyses	Designed for water quality best management practice	Designed explicitly for flood risk management	Uniform and steady- state analysis of channels	Varying and unsteady analysis of channels and floodplains	
	HYDROCALC			MANNING'S	HEC-RAS	

HYDROCALC

- Developed by LA County Public Works
- Modified Rational Method
- · Local scale flood analyses
- Drainage anaylses
- Easy to use interface

Source: http://dpw.lacounty.gov/wrd/publication/Engineering/hydrology/HydroCalc.zip

HYDROCALC

HYDROLOGY AND HYDRAULICS

H&H MODELING TOOLS

	HYDROLOGY			HYDROLOGY HYDRAULICS		
	UNIT HYDROLOGY	LARGER	WATERSHED	СНА	NNELS	
	HYDROCALC	LSPC	HEC-HMS	MANNING'S	HEC-RAS	
NAME	HydroCalc	Loading Simulation Program C++	Hydrologic Engineering Center - Hydrologic Modeling System	Manning's Equation	Hydrologic Engineering Center - River Analysis System	
DEVELOPER	LA County Public Works	LA County Public Works	US Army Corps of Engineers	Robert Manning	US Army Corps of Engineers	
DATE	2018	2013	2018	1889	2018	
PURPOSE	Modified Rational Method for local scale flood and drainage analyses	Designed for water quality best management practice	Designed explicitly for flood risk management	Uniform and steady- state analysis of channels	Varying and unsteady analysis of channels and floodplains	
	HYDROCALC	LSPC		MANNING'S	HEC-RAS	

LOADING SIMULATION PROGRAM IN C++ (LSPC)

- Developed by LA County Public Works as part of Watershed Management Modeling System (WMMS)
- Primarily for water quality
- Modified to assess supply benefits including climate change
- Evaluates long-term time-series (i.e., years to decades)

Source: LA County Public Works

HYDROLOGY AND HYDRAULICS

H&H MODELING TOOLS

		HYDROLOGY	HYDR	AULICS	
	UNIT HYDROLOGY	LARGER	WATERSHED	СНА	NNELS
	HYDROCALC	LSPC	LSPC HEC-HMS		HEC-RAS
NAME	HydroCalc	Loading Simulation Program C++	Hydrologic Engineering Center - Hydrologic Modeling System	Manning's Equation	Hydrologic Engineering Center - River Analysis System
DEVELOPER	LA County Public Works	LA County Public Works	US Army Corps of Engineers	Robert Manning	US Army Corps of Engineers
DATE	2018	2013	2018	1889	2018
PURPOSE	Modified Rational Method for local scale flood and drainage analyses	Designed for water quality best management practice	Designed explicitly for flood risk management	Uniform and steady- state analysis of channels	Varying and unsteady analysis of channels and floodplains
	HYDROCALC		HEC-HMS	MANNING'S	HEC-RAS

LSPC

HEC-HMS

Precipitation runoff simulation

- Event based precipitation events
 (e.g., 2-year, 100-year, ...)
- Infiltration
- Surface runoff
- Routing through drains and channels
- Flood control basins

HYDROLOGY AND HYDRAULICS

H&H MODELING TOOLS

			HYDF	AULICS	
	UNIT HYDROLOGY	LARGER V	VATERSHED	CHA	NNELS
	HYDROCALC	LSPC	HEC-HMS	MANNING'S	HEC-RAS
NAME	HydroCalc	Loading Simulation Program C++	Hydrologic Engineering Center - Hydrologic Modeling System	Manning's Equation	Hydrologic Engineering Center - River Analysis System
DEVELOPER	LA County Public Works	LA County Public Works	US Army Corps of Engineers	Robert Manning	US Army Corps of Engineers
DATE	2018	2013	2018	1889	2018
PURPOSE	Modified Rational Method for local scale flood and drainage analyses	Designed for water quality best management practice	Designed explicitly for flood risk management	Uniform and steady- state analysis of channels	Varying and unsteady analysis of channels and floodplains
	HYDROCALC			MANNING'S	HEC-RAS

s County Drainage Area (LACDA): Hydrologic Analysis. 2010. Figure 5: LACDA - HEC-HMS Model Schemati

HEC-HMS

MANNING'S EQUATION

Empirically derived in 1889

$$Q = \frac{K A R^{2/3} S^{1/2}}{n}$$

Q = flow rate A = cross-sectional area of flow P = wetted perimeter R = hydraulic radius = A/P S = slope of the channel at the point of measurement n = surface roughness (based upon channel material and condition) K = constant dependent upon units Cross Sectional Area, A Wetted Perimeter, P

Online Calculator: http://onlinecalc.sdsu.edu/onlinechannel01.php

Source: Geosyntec, OLIN

HYDROLOGY AND HYDRAULICS

MANNING'S EQUATION

Empirically derived in 1889

$$Q = \frac{K A R^{2/3} S^{1/2}}{n}$$

Q = flow rate

- A = cross-sectional area of flow
- P = wetted perimeter
- R = hydraulic radius = A/P
- S = slope of the channel at the point of measurement
- n = surface roughness (based upon channel material and condition)
- K = constant dependent upon units

Online Calculator: http://onlinecalc.sdsu.edu/onlinechannel01.php

Manning's n for Channels (Chow, 1959)

Type of Channel and Description	Minimum	Normal	Maximum
4. Excavated or Dredged Channels			
a. Earth, straight, and uniform			
1. clean, recently completed	0.016	0.018	0.020
2. clean, after weathering	0.018	0.022	0.025
3. gravel, uniform section, clean	0.022	0.025	0.030
4. with short grass, few weeds	0.022	0.027	0.033
b. Earth, winding, and sluggish			
1. no vegetation	0.023	0.025	0.030
2. grass, some weeds	0.025	0.030	0.033
3. dense weeds or aquatic plants in deep channels	0.030	0.035	0.040
4. earth bottom and rubble sides	0.028	0.030	0.035
5. stony bottom and weedy banks	0.025	0.035	0.040
6. cobble bottom and clean sides	0.030	0.040	0.050
e. Channels not maintained, weeds and brush uncut			
1. dense weeds, high as flow depth	0.050	0.080	0.120
2. clean bottom, brush on sides	0.040	0.050	0.080
3. same as above, highest stage of flow	0.045	0.070	0.110
4. dense brush, high stage	0.080	0.100	0.140
5. Lined or Constructed Channels			
c. Concrete			
1. trowel finish	0.011	0.013	0.015
2. float finish	0.013	0.015	0.016
3. finished, with gravel on bottom	0.015	0.017	0.020
d. Concrete bottom float finish with sides of:			
1. dressed stone in mortar	0.015	0.017	0.020
2. random stone in mortar	0.017	0.020	0.024
3. cement rubble masonry, plastered	0.016	0.020	0.024
4. cement rubble masonry	0.020	0.025	0.030
5. dry rubble or riprap	0.020	0.030	0.035
e. Gravel bottom with sides of:			
1. formed concrete	0.017	0.020	0.025
2. random stone mortar	0.020	0.023	0.026

MANNING'S

MANNING'S EQUATION

Does not account for upstream/downstream effects or hydraulic structures (e.g., bridges)

$$Q = \frac{KAR^{2/3}S^{1/2}}{n}$$

Variable		Dense Vegetation	Well-maintained Grasses	Concrete
constant	K	1.49 ft ^{1/3} /s	1.49 ft ^{1/3} /s	1.49 ft ^{1/3} /s
cross-sectional area of flow	А	4,000 ft ²	4,000 ft ²	4,000 ft ²
hydraulic radius	R	15	15	15
slope of the channel	S	0.005	0.005	0.005
surface roughness	n	0.06	0.03	0.016
flow rate	Q	43,000 cfs	85,000 cfs	160,000 cfs

Source: Geosyntec, OLIN

MANNING'S

81

HYDROLOGY AND HYDRAULICS

H&H MODELING TOOLS

			HYDR	AULICS	
		LARGER V	WATERSHED	СНА	NNELS
	HYDROCALC	LSPC	HEC-HMS	MANNING'S	HEC-RAS
NAME	HydroCalc	Loading Simulation Program C++	Hydrologic Engineering Center - Hydrologic Modeling System	Manning's Equation	Hydrologic Engineering Center - River Analysis System
DEVELOPER	LA County Public Works	LA County Public Works	US Army Corps of Engineers	Robert Manning	US Army Corps of Engineers
DATE	2018	2013	2018	1889	2018
PURPOSE	Modified Rational Method for local scale flood and drainage analyses	Designed for water quality best management practice	Designed explicitly for flood risk management	Uniform and steady- state analysis of channels	Varying and unsteady analysis of channels and floodplains
	HYDROCALC			MANNING'S	HEC-RAS

HEC-RAS

- Steady and unsteady hydraulic computations for network of open channels and floodplain
- 1-D Energy equation
- 2-D Shallow water equation
- Combine 1D/2D
 - (i.e., 1-D for channel, 2-D for floodplain)
- Accounts for upstream and downstream conditions

Source: USACE, Los Angeles River 0.2% ACE Floodplain FPMS Reach Grid Index 5.

83

Q & A AND DISCUSSION

SOLUTIONS AND OPPORTUNITIES

REDUCE FLOWS USING LID / BMP / DISTRIBUTED STORAGE

LOW IMPACT DEVELOPMENT (LID) EXAMPLES

Capture and retain the 85th percentile precipitation event runoff

- Standalone Bioretention
- Bioretention + Drywells
- Pervious Pavement + Drywells
- Water Quality
- Conservation

Source: Geosyntec

HYDROLOGY AND HYDRAULI

GREEN STREETS

Green infrastructure along, on, and within the public right-of-way

- Rain Gardens
- Bioretention
- Permeable Pavement
- Infiltration Trench
- Drywells

REGIONAL PROJECTS

Water quality regional project examples

200

- Above Ground Retention
- Underground Retention/Cisterns

HYDROLOGY AND HYDRAULICS

REGIONAL PROJECTS

Project Examples

Flood Risk Reduction Sepulveda Basin

Sepulveda Basin

Water Supply

REGIONAL PROJECTS

	WATER QUALITY	WATER SUPPLY	FLOOD
PROJECT Footprint	0.2 - 15 acres or less	15-160 acres	50+ acres
DESIGN CAPACITY	N 85 th percentile event or smaller Up to 5 year storm		50 year storm or greater
PRIMARY Purpose	Water quality improvement	Water supply benefits	Flood risk reduction
CONSTRUCTION COST	\$\$	\$\$\$\$\$	\$\$\$\$\$

Source: Geosyntec

HYDROLOGY AND HYDRAULICS

WATER QUALITY OBJECTIVES

Upper LA River (ULAR) Enhanced Water Quality Management Plan (EWMP)

Upper Los Angeles River EWMP 5,186 AF total in ULAR by 2037 2017 2024 2028 2032 2037 5,000 Structural BMP Capacity (acre-ft) 4,000 **Total Regional Best Management Practices** 3,000 (BMPs): 3,449 AF Green Streets: 2,000 1,196 AF Total LID Best Management Practices (BMPs): 1,000 541 AF **Residual Toxics Source Control Measures** 0 31% 50% METALS TOXICS BACTERIA Interim Final

Source: ULAR EWMP (2016), https://www.waterboards.ca.gov/losangeles/water_issues/programs/stormwater/municipal/watershed_management/los_angeles/upper_losangeles/20160127/Upper_LARiver_mainbody_revEWMP_Jan2016.pdf

WATER QUALITY OBJECTIVES

HYDROLOGY AND HYDRAULICS

EFFECT OF URBANIZATION

Source: U.S. Army Corps of Engineers: Los Angeles District. 1991. Los Angeles County Drainage Area: Review, Part I, Hydrology Technical Report, Base Conditions

EFFECT OF URBANIZATION

HYDROLOGY AND HYDRAULICS

EFFECT OF URBANIZATION

Source: U.S. Army Corps of Engineers: Los Angeles District. 1991. Los Angeles County Drainage Area: Review, Part I, Hydrology Technical Report, Base Conditions

H&H MODELING TOOLS

		HYDROLOGY	HYDR	AULICS	
	UNIT HYDROLOGY	LARGER	NATERSHED	CHANNELS	
	HYDROCALC	LSPC	LSPC HEC-HMS		HEC-RAS
NAME	HydroCalc	Loading Simulation Program C++	Hydrologic Engineering Center - Hydrologic Modeling System	Manning's Equation	Hydrologic Engineering Center - River Analysis System
DEVELOPER	LA County Public Works	LA County Public Works	US Army Corps of Engineers	Robert Manning	US Army Corps of Engineers
DATE	2018	2013	2018	1889	2018
PURPOSE	Modified Rational Method for local scale flood and drainage analyses	Designed for water quality best management practice	Designed explicitly for flood risk management	Uniform and steady- state analysis of channels	Varying and unsteady analysis of channels and floodplains
	HYDROCALC	LSPC	HEC-HMS	MANNING'S	HEC-RAS

HYDROLOGY AND HYDRAULICS

HYDROCALC

97

WORKING SESSION BREAK

HYDROLOGY AND HYDRAULICS HYDROCALC

HydroCalc Example Sites

Site Locations
ingle Subarea	Multi-Subarea					
Inputs				Outputs		
Project Name		Project		Modeled (1-yr) Rainfall Depth (in)	1.8395	
Subarea ID		Subarea 1A		Peak Intensity (in/hr)	0.4728	
Area (ac)		40		Undeveloped Runoff Coefficient (Cu)	0.5535	
Flow Path Leng	th (ft)	1500		Developed Runoff Coefficient (Cd)	0.5881	
Flow Path Slope	e (vft/hft)	0.01		Time of Concentration (min)	30	
24-hr, 50-yr Ra	infall Depth (in)	6.50		Clear Peak Flow Rate (cfs)	11.1223	
Percent Imperv	ious (0.01-1.0)	0.10		Burned Peak Flow Rate (cfs)	11.1223	
Soil Type (2-18	0)	2	*	24-Hr Clear Runoff Volume (ac-ft)	1.5122	
Design Storm Fi	requency	1-yr	•	24-Hr Clear Runoff Volume (cu-ft)	65869.2981	
Fire Factor		0	•			
12 10		Hydro	graph (Project: Subarea 1A)	1	
Chart 12 - 10 - 8 - (\$5) 8 - (Hydro	igraph (Project: Subarea 1A)		-
12 10 8 (\$ <u>5</u>) 80 - 0 - 2 0 ∠ 0	200	Hydro 400	egraph (600 Tin	Project: Subarea 1A)	1400	1600

HYDROCALC

101

HYDROLOGY AND HYDRAULICS HYDROCALC

HYDROCALC

HYDROLOGY AND HYDRAULICS **HYDROCALC**

Subarea

HYDROCALC

HYDROLOGY AND HYDRAULICS HYDROCALC

drocalc 1.0.3			- 🗆 X	5 0%	INC. SPACE AND STATE
le Subarea Multi-Subarea				STATISTICS STATISTICS	
puts		Outputs			60%
oject Name	Project	Modeled (1-yr) Rainfall Depth (in) 1.839	95	Self Shi Shi Baran	
area ID	Subarea 1A	Peak Intensity (in/hr) 0.47	28	A Real Andread A Real Property of the second s	
(ac)	40	Undeveloped Runoff Coefficient (Cd) 0.553	35		A State of the second s
Path Slope (vft/hft)	0.01	Time of Concentration (min) 30	01	HydroCalc Example Sites	0 60 %
r, 50-yr Rainfall Depth (in)	6.50	Clear Peak Flow Rate (cfs)	223		
ent Impervious (0.01-1.0)	0.10	Burned Peak Flow Rate (cfs)	223	Site Locations	adding the
ype (2-180)	2	24-Hr Clear Runoff Volume (ac-ft) 1.512	22		
gn Storm Frequency	1-yr	24-Hr Clear Runoff Volume (cu-ft) 6586	9,2981	9/ Image and a ve	Real Providence of Cast of
Factor	0	•		% Impervious	0 50%
12 10 8 - (f) 8 4 - 2 0 200 Save as PDF	400 600 Save as CSV	BOO 1000 1200 140	00 1600	 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80% 80-90% 90-100% 	0.50%
				Source: Geosyntec, OLIN, LA County GIS Data Portal NI, CD 2011 Impervious Surface	
e http://dow.lacoupty.or	ov/wrd/nublication/	F DRIDGEFIDR/DVR/DIORV/HVR/DI SIC ZID			

HYDROLOGY AND HYDRAULICS HYDROCALC

nputs		Outputs	
roject Name	Project	Modeled (1-yr) Rainfall Depth (in)	1,8395
ubarea ID	Subarea 1A	Peak Intensity (in/hr)	0.4728
rea (ac)	40	Undeveloped Runoff Coefficient (Cu)	0.5535
low Path Length (ft)	1500	Developed Runoff Coefficient (Cd)	0.5881
iow Path Slope (vft/hft)	0.01	Time of Concentration (min)	30
4-hr, 50-yr Rainfall Depth (in)	6.50	Clear Peak Flow Rate (cfs)	
ercent Impervious (0.01-1.0)	0.10	Burned Peak Flow Rate (cfs)	
oil Type (2-180)	2	24Hr Clear Runoff Volume (ac-ft)	1.5122
esign Storm Frequency	1-yr	▼ 24-Hr Clear Runoff Volume (cu-ft)	65869.2981
re Factor	0	•	
12, 10 - 8 -	Hydrogra	ph (Project: Subarea 1A)	-
12 10 8 8 4	Hydrogra	ph (Project: Subarea 1A)	-
hart 12 10 8 - - - - - - - - - - - - -	Hydrogra	ph (Project: Subarea 1A)	1400 1600
hart 12 10 8 4 2 0 200	Hydrogra 400 600	ph (Project: Subarea 1A)	1400 1600

HydroCalc Example Sites

Site Locations

Common Soil Classes (2-180)

- 06 Hanford Fine Sandy Loam 13 - Ramona Loam
- 14 Romona Sandy Loam 15 - Tujunga Fine Sandy Loam
- 16 Yolo Loam
- 55 Upper LA River

Source: Geosyntec, OLIN, Content modified fro types.zip

0 0

DRAFT

01%

13 - Ramona Loam 115 Co Develop M[®] = Proporte C₂ = Undevelop RUNOFF COEFFICIENT CURVE SOIL TYPE NO.013 0.9 \$ 0.8 0.7 0.6 100 0.4 Q 02 0 8.0 10.0 FALL INTENSITY (I) IN 15 - Tujunga Fine Sandy Loam 1.0 0.9 ā 0.8 0.1 80 0.5 0.4 0.3 9 02 0. 0.0 4.0 2.0 6.0 12.0 0.0 10.0 ISITY IS INC -845

HYDROCALC

107

HYDROLOGY AND HYDRAULICS HYDROCALC

Source: Geosyntec, OLIN, Content modified from Los Angeles County GIS Data Portal, Rainfall Intensity, 2011

HYDROCALC

ingle Subarea Multi-Subarea				
Inputs			Outputs	
Project Name	Project.		Modeled (1-yr) Rainfall Depth (in)	1.8395
Subarea ID	Subarea 1A		Peak Intensity (in/hr)	0.4728
Area (ac)	40		Undeveloped Runoff Coefficient (Cu)	0.5535
flow Path Length (ft)	1500		Developed Runoff Coefficient (Cd)	0.5881
Flow Path Slope (vft/hft)			Time of Concentration (min)	30
24-hr, 50-yr Rainfall Depth (in)	6.50		Clear Peak Flow Rate (cfs)	11.1223
Percent Impervious (0.01-1.0)	0.10		Burned Peak Flow Rate (cfs)	11.1223
Soil Type (2-180)	2	Ψ.	24-Hr Clear Runoff Volume (ac-ft)	1.5122
Design Storm Prequency	1-97		24-Hr Clear Runoff Volume (cu-ft)	65869.2981
Fire Factor	0			
12 10	Hydro	ograph (Project: Subarea 1A)	-
12 10 - 8 - (5) × 6 -	Hydro	graph (Project: Subarea 1A)	-
12	Hydro	ograph (Project: Subarea 1A)	-
12 10 8 (9) 0 6 - 4	Hydro	graph (Project: Subarea 1A)	
Durt 12 10 8 - (1) 6 - 4 - 2 -	Hydro	ograph (Project: Subarea 1A)	
Chart	Hydro 400	egraph (600 Tim	Project: Subarea 1A)	1400 1600

Source: Geosyntec, OLIN, Content modified from Los Angeles County GIS Data Portal, Rainfall Intensity, 2011

HYDROCALC

109

HYDROLOGY AND HYDRAULICS

- Fraction of rain that runs off undeveloped surfaces
 - soil type
 - rain intensity
- Fraction of rain that runs off developed surfaces
 - undeveloped surfaces + imperviousness
- Travel time for water from furthest point in subarea

ngle Subarea Multi-Subarea				
Inputs			Outputs	
Project Name	Project		Modeled (1-yr) Rainfall Depth (in)	1.8395
Subarea ID	Subarea 1A		Peak Intensity (in/hr)	0.4728
Area (ac)	40		Undeveloped Runoff Coefficient (Cu)	0.5535
Flow Path Length (ft)	1500		Developed Runoff Coefficient (Cd)	0.5881
Flow Path Slope (vft/hft)			Time of Concentration (min)	30
24-hr, 50-yr Rainfall Depth (in)	6.50		Clear Peak Flow Rate (cfs)	11.1223
Percent Impervious (0.01-1.0)			Burned Peak Flow Rate (cfs)	11.1223
Sol Type (2-180)	2	Ψ	24-Hr Clear Runoff Volume (ac-ft)	1.5122
Design Storm Frequency	1-97	.w.	24-Hr Clear Runoff Volume (cu-ft)	65869.2981
Fire Factor	0			
Chart 12 ,	Hydro	graph (Project: Subarea 1A)	·]
12 10 8 (sp) 6 4	Hydro	graph (Project: Subarea 1A)	-
	Hydroi 400	graph (600 Tim	Project: Subarea 1A)	1400 1600

Peak Flow Rates

- Relevant for drainage design and flood risk management
- Will be higher for burned watersheds
 - debris bulking
 - hydro-phobic soil

Volumes

• Relevant for LID / BMP design

HYDROCALC

111

HYDROLOGY AND HYDRAULICS HYDROCALC

Source: Geosyntec, OLIN, Content modified from http://www.ladpw.org/wrd/publication/Engineering/hydrology/rain_d http://www.ladpw.org/wrd/publication/Engineering/hydrology/soll_types.zip; Los Angeles County (BIS Date Portal, Rahrial Intensity, 2011 HYDROCALC

WATERSHED CALCULATION

0% Impervious

100% Impervious

This is a volume estimate only, not a peak flow estimate

Percentage of rain that falls on impervious surface Percentage of rain that LID/BMP captures from a 100-year storm

~15%

Total rainfall captured by LID/BMPs during a 100-year storm

Source: LA County GIS Data Portal NLCD 2011 Impervious Surface.

X

EXAMPLE LOCATIONS

Section at Glendale Narrows (River Mile 29)

Section at Firestone Blvd (River Mile 13) -

HYDROLOGY AND HYDRAULICS

Source: Geosyntec, OLIN

NARROWS ARBOR REACHES

Some sections only manage to the 4-year storm

Reach ^(a)	River Stations	Design ^(b) Discharge ft ³ /s	Design Return Period ^(e) yr	Current Freeboard Criteria ^(c) ft	Existing ^(d) Channel Capacity ft ³ /s	Existing Return Period (e) yr	100-Year Discharge ^(e) ft ³ /s
Reach 1	625+77 to 547+45	40,000	12	3	29,300	4	81,000
Reach 2	546+45 to 510+05	40,000	7	3	25,800	3	88,900
Reach 3a	504+93 to 477+85	40,000	7	3	63,000 ^(f)	32	88,900
Reach 3b	475+68 to 452+58	78,000	51	3	84,000 ^(f)	69	94,600
Reach 4	432+16 to 359+75	78,000	51	3	34,700	4	94,600
Reach 5	358+63 to 271+89	78,000	51	3	34,000	4	94,600
Reach 6a	270+28 to 262+73	78,000	51	2.5	64,500	24	94,600
Reach 6b	257+85 to 144+23	83,700	57	2.5	50,500	11	93,800
Reach 7a	142+91 to 131+22	83,700	57	2.5	135,400 ^(f)	>500	93,800
Reach 7b	128+71 to 86+61	104,000	83	3	83,700	32	109,000
Reach 8	86+07 to 10+31	104,000	83	3	89,600	42	109,000
Notes: (a) Lette (b) Origi (c) Free (d) Exisi Disc (e) Retu LAC (f) In sc adec (g) Refe	rs a & b in Reach nam nal design discharge fi board from EM 1110-2 ting channel capacity w harges above these lis mr periods for Design I DA Feasibility Study. me limited reaches the uate freeboard. r to Plates 21a through	tes denote a ch or clean prisma -1601; 3 feet for vith vegetation, ted do not nece Discharge and l e existing chant or 24b to see the	ange in the riv tic channel. or leveed sectid sedimentation ossarily cause Existing Chann nel capacity is	er due to a confl ons and 2.5 feet and freeboard. damages. nel Capacity are greater than the	uence or change in cha for trapezoidal entrenct The values shown are t based on discharge fre original design discharg frequency flows within 1	innel dimensions. hed sections. he minimum withi quency analysis fo ge because of mo he study limits	n the reach. or the 1992 re than

HH Appendix

61

September 2015

H&H MODELING TOOLS

		HYDROLOGY		HYDRAULICS		
	UNIT HYDROLOGY	LARGER WATERSHED		CHANNELS		
	HYDROCALC	LSPC HEC-HMS		MANNING'S	HEC-RAS	
NAME	HydroCalc	Loading Simulation Program C++	Hydrologic Engineering Center - Hydrologic Modeling System	Manning's Equation	Hydrologic Engineering Center - River Analysis System	
DEVELOPER	LA County Public Works	LA County Public Works	US Army Corps of Engineers	Robert Manning	US Army Corps of Engineers	
DATE	2018	2013	2018	1889	2018	
PURPOSE	Modified Rational Method for local scale flood and drainage analyses	Designed for water quality best management practice	Designed explicitly for flood risk management	Uniform and steady- state analysis of channels	Varying and unsteady analysis of channels and floodplains	
	HYDROCALC	LSPC	HEC-HMS	MANNING'S	HEC-RAS	

HYDROLOGY AND HYDRAULICS

LSPC MODEL: LOS ANGELES BASIN STUDY

Updated by Reclamation to include LID/BMP

- Supply effects of climate change and LID studied
- Adjusted impervious land-use areas within all subwatersheds to represent widespread LID implementation
- 47 different climate-change projections

Two Levels of LID

- 0.75 inches of storage, 3-day drawdown
- 1.0 inches of storage, 1.5-day drawdown
- Up to ~48,000 ac-ft/year of additional stormwater conserved in LA River watershed from LID

Source: Simes, J. U.S. Department of the Interior & Alexanderson, L., Bradbury, D. County of Los Angeles Public Works, November 2016, https://www.usbr.gov/lc. socal/basinstudies/LABasin.html

Similar to Wet February 2019

HYDROLOGY AND HYDRAULICS

H&H MODELING TOOLS

		HYDROLOGY		HYDRAULICS		
	UNIT HYDROLOGY	LARGER WATERSHED		CHANNELS		
	HYDROCALC	LSPC	HEC-HMS	MANNING'S	HEC-RAS	
NAME	HydroCalc	Loading Simulation Program C++	Hydrologic Engineering Center - Hydrologic Modeling System	Manning's Equation	Hydrologic Engineering Center - River Analysis System	
DEVELOPER	LA County Public Works	LA County Public Works	US Army Corps of Engineers	Robert Manning	US Army Corps of Engineers	
DATE	2018	2013	2018	1889	2018	
PURPOSE	Modified Rational Method for local scale flood and drainage analyses	Designed for water quality best management practice	Designed explicitly for flood risk management	Uniform and steady- state analysis of channels	Varying and unsteady analysis of channels and floodplains	
	HYDROCALC		HEC-HMS	MANNING'S	HEC-RAS	

Above Arroyo Seco (River Mile 25)

IMPERVIOUS SURFACE BASELINE

100% Impervious Baseline Condition

IMPERVIOUS SURFACE 10% REDUCTION

0% Impervious

100% Impervious Volume Reduction: 1,866 AF Fraction of 2037 Goals: 36%

IMPERVIOUS SURFACE 50% REDUCTION

0% Impervious

100% Impervious Volume Reduction: 9,331 AF Fraction of 2037 Goals: 180%

0% Impervious

100% Impervious Volume Reduction: 5,186 AF Fraction of 2037 Goals: 100% Source: LA County GIS Data Portal NLCD 2011 Impervious Surface

IMPERVIOUS SURFACE

28% REDUCTION

HYDROLOGY AND HYDRAULICS

NARROWS 2-YEAR STORM

Hydrograph: Glendale Narrows, River Mile 29

Baseline Imperviousness

50% Reduction in Imperviousness

HEC-HMS

NARROWS 100-YEAR STORM

Hydrograph: Glendale Narrows, River Mile 29

120,000 100,000 Discharge (Cubic Feet Per Second) 80,000 78.000 cfs Design Capacity (51-year return period)* 60,000 40,000 34,700 cfs **Existing Capacity** (4-year return period)* 20,000 0 12 24 36 0 48 Time (hours) Source: Geosyntec, OLIN * flow rates and return periods from Table 17 of HH Appendix E (USACE, 2015)

Baseline Imperviousness 10% Reduction in Imperviousness 28% Reduction in Imperviousness

50% Reduction in Imperviousness

HEC-HMS

123

HYDROLOGY AND HYDRAULICS

FIRESTONE 2-YEAR STORM

Hydrograph: Firestone Blvd, River Mile 13

Baseline Imperviousness 10% Reduction in Imperviousness 28% Reduction in Imperviousness 50% Reduction in Imperviousness

Source: Geosyntec, OLIN * flow rates and return periods from Table 1 of Part II Hydrology Report (USACE, 1991)

Firestone Bivd (River Mile 13)

FIRESTONE 100-YEAR STORM

ce: OLIN

10% Reduction in Imperviousness

28% Reduction in Imperviousness

50% Reduction in Imperviousness

HEC-HMS

REDUCE FLOWS BY ADDING CENTRALIZED STORAGE

FLOOD CONTROL BASINS

Sepulveda: 18,127 AF Hansen: 33,348 AF

Flood Control Basins
Spreading Grounds
Debris Basins
Levees
Storm Drains
Dams
Rivers
Source: LA County GIS Portal, Google Earth, Geosyntec

HYDROLOGY AND HYDRAULICS

FLOOD CONTROL BASINS

Sepulveda Basin

Hansen Basin

NARROWS 100-YEAR STORM WITH LARGER BASINS

Hydrograph: Glendale Narrows, River Mile 29

Baseline

With Larger Basins

HEC-HMS

129

HYDROLOGY AND HYDRAULICS

FIRESTONE 100-YEAR STORM WITH LARGER BASINS

Hydrograph: Firestone Blvd, River Mile 13

. Hydrograph assumes Sepulveda and Hansen Basins are enlarged significantly enough that no outflow occurs. flow rates and return periods from Table 1 of Part II Hydrology Report (USACE, 1991)

Firestone Blvd (River Mile 13)

FLOOD CONTROL BASINS

Sepulveda Basin

Hansen Basin

Burbank-Verdugo Basin?

Source: Google Earth

HYDROLOGY AND HYDRAULICS

FLOOD CONTROL BASINS

Sepulveda: 18,127 AF Hansen: 33,348 AF Verdugo and Burbank Location?

Source: LA County GIS Portal, Google Earth, Geosyntec

NARROWS 100-YEAR STORM WITH EXTRA BASINS

Hydrograph: Glendale Narrows, River Mile 29

Baseline

With New Basins

HEC-HMS

133

HYDROLOGY AND HYDRAULICS

FIRESTONE 100-YEAR STORM WITH EXTRA BASINS

Hydrograph: Firestone Blvd, River Mile 13

HEC-HMS

Newly developed Flood Control Basins "modeled" on Burbank and Verdugo Washes, just upstream of confluence with LA River. New basins assume similar operations to Sepulveda * flow rates and return periods from Table 1 of Part II Hydrology Report (USACE, 1991)

INCREASE CHANNEL CAPACITY BY WIDENING THE CHANNEL

HYDROLOGY AND HYDRAULICS

Source: OLIN

INCREASE CHANNEL WIDTH

Need to increase by 2 to 3 times

	Existing	Required
Κ	1.49 ft ^{1/3} /s	1.49 ft ^{1/3} /s
А	4,000 ft ²	9,200 ft ²
R	13.5 ft	15.8 ft
S	0.0044	0.0044
n	0.06	0.06
Q	37,000 cfs	95,000 cfs

← Required 2x - 3x (estimate based on Manning's equation) —

MANNING'S

≯

NARROWS ARBOR REACHES

Some sections only manage to the 4-year storm

(3)	Ia	ole II. Oligina	ai Desigii Disc	indige and Exis	ting channel capacity		1
Reach	Stations	Design ⁽⁰⁾ Discharge	Design Return Period ^(e)	Current Freeboard Criteria ^(c)	Existing ⁽⁰⁾ Channel Capacity	Existing Return Period	100-Year Discharge ^{(e}
		ft ³ /s	yr	ft	ft ³ /s	уг	ft ³ /s
Reach 1	625+77 to 547+45	40,000	12	3	29,300	4	81,000
Reach 2	546+45 to 510+05	40,000	7	3	25,800	3	88,900
Reach 3a	504+93 to 477+85	40,000	7	3	63,000 ^(f)	32	88,900
Reach 3b	475+68 to 452+58	78,000	51	3	84,000 ^(f)	69	94,600
Reach 4	432+16 to 359+75	78,000	51	3	34,700	4	94,600
Reach 5	358+63 to 271+89	78,000	51	3	34,000	4	94,600
Reach 6a	270+28 to 262+73	78,000	51	2.5	64,500	24	94,600
Reach 6b	257+85 to 144+23	83,700	57	2.5	50,500	11	93,800
Reach 7a	142+91 to 131+22	83,700	57	2.5	135,400 ^(f)	>500	93,800
Reach 7b	128+71 to 86+61	104,000	83	3	83,700	32	109,000
Reach 8	86+07 to 10+31	104,000	83	3	89,600	42	109,000
lotes: (a) Lette (b) Origi (c) Free (d) Exist Disc (e) Retu LAC (f) In sc adec	ers a & b in Reach nam inal design dischärge fi board from EM 1110-2 ting channel capacity w harges above these lis m periods for Design fi DA Feasibility Study. me limited reaches the quate freeboard.	es denote a ch or clean prisma -1601; 3 feet fo vith vegetation, ted do not nec Discharge and a existing chann	nange in the riv tic channel. or leveed section sedimentation essarily cause Existing Chann nel capacity is	er due to a confl ons and 2.5 feet and freeboard. damages. lel Capacity are greater than the	uence or change in cha for trapezoidal entrenct The values shown are t based on discharge fre original design dischar	nnel dimensions. ned sections. he minimum withi quency analysis fo ge because of mo	n the reach. or the 1992 re than

HH Appendix 61 September 2015

Source: U.S. Army Corps of Engineers, Los Angeles District. Los Angeles River Ecosystem Restoration Project, Volume III, Appendix E (HH Appendix). 2015.

HYDROLOGY AND HYDRAULICS

INCREASE CHANNEL WIDTH

Width increase needs to be for extended distances

<figure>

U.S. ARMY ENGINEER DISTRICT

Source: Los Angles River Ecosystem Restoration Feasibility Study, Appendix E, Hydrology and Hydraulics, US Army Corps of Engineers, Los Angeles District, September 2015

CORPS OF ENGINEERS

INCREASE CHANNEL WIDTH

May require bridge lengthening or re-design and increasing channel width impacts the right-of-way, private and public real estate, transportation, etc.

HYDROLOGY AND HYDRAULICS

INCREASE CHANNEL WIDTH

Alternative Section: 95,000 cfs capacity

Source: Geosyntec, OLIN

Glendale Narrows (River Mile 29)

100-YEAR STORM WITH A WIDER CHANNEL

Hydrograph: Glendale Narrows, River Mile 29

141

INCREASE CHANNEL CAPACITY BY RAISING LEVEE HEIGHT

100-YEAR STORM WITH HIGHER LEVEES / PARAPET WALLS

Hydrograph: Glendale Narrows, River Mile 29

INCREASE CHANNEL CAPACITY BY ADDING BYPASS TUNNEL

HYDROLOGY AND HYDRAULICS

ADD A BYPASS TUNNEL

Existing Section: 34,700 cfs capacity

Alternative Section: 54,700 cfs capacity

Source: Geosyntec, OLIN

MANNING'S

BYPASS TUNNEL

- 40 foot diameter concrete tunnel
- 9 miles long
- 0.6% Slope
- Half full
- 20,000 cfs capacity
- Hydraulic challenges
- \$2.5 Billion (scaled from Delta Tunnels estimate)

Source: Geosyntec, OLIN

HYDROLOGY AND HYDRAULICS

TUNNEL EXAMPLES

TUNNELS	OWNER D	IAMETER (FT) LENGTH (MI)
Delta Tunnels	CA DWR	2' x 40'	35
Pawtucket Tunnel	Narragansett Bay Commission	28′	2.5
Euclid Creek Storage Tunnel	Northeast Ohio Regional Sewer District	24′	3.5
Anacostia River Tunnel	DC Water and Sewer Authority	23′	2.4
Lower & Middle River Des Peres Storage Tunnel	Metropolitan St. Louis Sewer District	30′	9

100-YEAR STORM WITH BYPASS TUNNEL

MANNING'S HEC-HMS

INCREASE CHANNEL CAPACITY BY REFURBISHING THE CHANNEL

HYDROLOGY AND HYDRAULICS

Source: OLIN

REFURBISHMENT

To increase channel capacity: remove invasives, remove sediment, maintain channel, replace exotic with native grasses.

Existing Section: 34,700 cfs capacity n = 0.06

Glendale Narrows (River Mile 29)

Alternative Section: 78,000 cfs capacity n = 0.03

HEC-RAS

100-YEAR STORM WITH REFURBISHMENT

To increase channel capacity: remove invasives, remove sediment, maintain channel, replace exotic with native grasses.

Hydrograph: Glendale Narrows, River Mile 29

HYDROLOGY AND HYDRAULICS

Alternative Section: 120,000 cfs capacity n = 0.016

Glendale Narrows (River Mile 29)

HEC-RAS

100-YEAR STORM WITH CONCRETE BOTTOM

To increase channel capacity: Harden the channel bottom to reduce friction.

HEC-HMS

HEC-RAS

REFURBISHMENT + BYPASS TUNNEL

Remove invasives and sediment, maintain channel, optional native grasses, build bypass

Existing Section: 34,700 cfs capacity

Alternative Section: 98,000 cfs capacity

HYDROLOGY AND HYDRAULICS

REFURBISHMENT + BYPASS TUNNEL

Remove invasives and sediment, maintain channel, optional native grasses, build bypass

Glendale Narrows (River Mile 29)

REFURBISHMENT + BYPASS + EWMP 2037

Remove invasives, remove sediment, maintain channel, optional native grasses, build bypass, 28% impervious surface reduction

Hydrograph: Glendale Narrows, River Mile 29

INCREASING CAPACITY: 100-YEAR STORM EVENT

HEC-HMS Model: Glendale Narrows (River Mile 29)

Hydrograph: 28% Impervious Reduction 120.000 - Bill 2000 cfs Capacity with Different Vegetation - Systas Tunnel 00.000 - Bill 2000 cfs 00.000 - B

Baseline Imperviousness

28% Imperviousness Reduction

28% Imperviousness Reduction + Refurbishment

28% Imperviousness Reduction + Refurbishment + Bypass Tunnel

(River Mile 29

INCREASING CAPACITY: 100-YEAR STORM EVENT

HEC-HMS Model: Glendale Narrows (River Mile 29)

Hydrograph: 28% Impervious Reduction 10,000 - 99,000 - 99,000 Cfs 100,000 Cfs 100,000 - 99,000 Cfs 100,000 Cfs 100,000 Cfs 100

Baseline Imperviousness

28% Imperviousness Reduction

28% Imperviousness Reduction + Refurbishment

28% Imperviousness Reduction + Refurbishment + Bypass Tunnel

Note: Width of river represents flow, not floodway width

HYDROLOGY AND HYDRAULICS

REDUCE FLOWS TO THE CHANNEL

- Low Impact Development
- Best Management Practices
- Distributed Storage
- Increase Sepulveda and Hansen Flood

Control Basins

Additional Flood Control Basins

INCREASE CHANNEL CAPACITY

- Increase Channel Width
- Increase Levee Height
- Bypass Tunnel
- Sediment Removal/Vegetation Conversion
- Concrete

Q & A AND DISCUSSION

PARTICIPANTS

- Iraj Nasseri, Ph.D., P.E. (Los Angeles County Flood Control District)
- Keith Lilley, P.E. (Los Angeles County Flood Control District)
- Nami Tanaka, P.E. (Geosyntec)
- Al Preston, Ph.D., P.E. (Geosyntec)
- Mark Hanna, Ph.D., P.E. (Geosyntec)

WRAP UP

What have we learned? What needs more study/analysis?

Web Resources:

- County real-time precipitation gages
 https://dpw.lacounty.gov/wrd/precip/alert_rain/index.cfm
- USACE real-time precipitation gages
 http://resreg.spl.usace.army.mil/cgi-bin/gMap.cgi?larP
- USACE real-time flow rates http://resreg.spl.usace.army.mil/cgi-bin/gMap.cgi?larF
- County HydroCalc
 http://dpw.lacounty.gov/wrd/publication/Engineering/hydrology/HydroCalc.zip
- USACE HEC-HMS
 https://www.hec.usace.army.mil/software/hec-hms/
- USACE HEC-RAS
 https://www.hec.usace.army.mil/software/hec-ras/
- Manning's calculator http://onlinecalc.sdsu.edu/onlinechannel01.php

LARiverMasterPlan.org