LOS ANGELES RIVER MASTER PLAN UPDATE

Hydrology and Hydraulics Workshop

20 March 2019

WELCOME

l?appid=e15694dbf7c54f8c96285a0e74039e69

e: USACE, Los Angeles District, G-514 - Kelly Pipe Co Mission Road - 9-5-1930, http://cespl.maps.arcgis.com/apps/Ma

OUTLINE

LA RIVER WATERSHED

- Hydrology
- Hydraulics
- LA River

TIMELINE OF THE LA RIVER

- 1850-2019
- How Did We Get Here?
- Historical Flood Mapping
- February 2, 2019 Storm
- Current Protection Level and Flood Risk
- Brainstorming Ideas

TOOLS AND ANALYSES

- HydroCalc
- Loading Simulation Program in C++
- HEC Hydrologic Modeling System
- Manning's Equation
- HEC River Analysis System

SOLUTIONS AND OPPORTUNITIES

- Evaluations
- Worksession Breakout - Modeling the Theories Ourselves
- Advanced Modeling

WRAP UP

- Discussion
- What Have We Learned?
- What Needs More Study/Analysis?
- Other Resources

OVERVEW.

LA RIVER HYDROLOGY AND HYDRAULICS (H&H)

WATERSHED CONDITIONS

- Topography
- Geology & Soils
- Vegetation Cover & Land Use
- Climate/Precipitation

INFRASTRUCTURE

- Spreading grounds
- Detention basins
- Channels
- Storm Drains

OVERVIEW

HYDROLOGY

HYDRAULICS

LA RIVER

THE HYDROLOGICAL CYCLE

THE LA RIVER WATERSHED

- Spreading Grounds
- Debris Basins
- Levees
- Storm Drains
- Dams

Source: LA County GIS Portal, Google Earth, Geosyntec

THE LA RIVER WATERSHED

Section cut at the Rio Hondo Confluence

Flood Control Basins

- Spreading Grounds
- Debris Basins
- Levees
- Storm Drains
- Dams
- Rivers

Source: LA County GIS Portal, Google Earth, Geosyntec

VEROLOGY AND HYDRAULICS

THE LA RIVER WATERSHED

BELL GARDENS

SOUTH-C

Detail of sub-surface hydrology near the Rio Hondo Confluence

VERNON

town LA

Source: LA County GIS Portal, Google Earth, Geosyntec

Alluvium/Quaternary Strata (pervious, contains aquifers)

Older Sedimentary Strata (semi-pervious, no aquifers)

Igneous Bedrock (impervious)

~20,000 ft

Central Basin Aquifers

SOIL-WATER PROCESSES

Surface and sub-surface hydrology near the Rio Hondo Confluence

Rainfall Rate = 0.4 in/hr

NoSurface Runoff Rainfall Rate ≤ Infiltration Capacity

Infiltration Rate = 0.4 in/hr Infiltration Capacity = 0.6 in/hr

SOIL-WATER PROCESSES

Infiltration rate of soil decreases as it becomes saturated

OVERVIEW

HYDROLOGY

HYDRAULICS

LA RIVER

HYDRAULIC FLOOD SYSTEM

Spreading Grounds

Flood Control Basins

- **Storm Drains**
 - **Streams and Channels**

Source: LA County GIS Portal

HYDRAULICS - CHANNEL CAPACITY

LOWER CAPACITY

AREA

DEPTH Hydraulic radius

ROUGHNESS Manning's n

Source: Geosyntec, OLIN

HIGHER CAPACITY

HYDRAULICS - BRIDGES

Los Feliz Blvd on 2 February 2019

Upstream of Bridge

Downstream of Bridge

OVERVIEW

HYDROLOGY

HYDRAULICS

LA RIVER

THE LA RIVER DROPS 780 FEET IN JUST 51 MILES

High (7,103 ft)

Low(0ft)

Source: U.S. Geological Survey, 2013, USGS NED 1 arc-second 2013

LA RIVER WATERSHED IMPERVIOUSNESS

0% Impervious

100% Impervious

Source: LA County GIS Data Portal, NLCD 2011 Impervious Surface

85TH PERCENTILE 24-HOUR RAINFALL DEPTH

Canoga Park

Reseda

51 50 49 48 47 48 45 44

Daks

Studio City

Commonly used for water quality design

85 percent of storms are less than or equal to the 85th percentile rain event.

Total Rainfall (inches)

- 0.20 0.45
- 0.45 0.70
- 0.70 0.95
- 0.95 1.20

STORM PROBABILITY

Defining the 100 year storm:

- A storm that happens once every 100 years on average.
- A storm that has a 1% probability of happening in any given year.
- Two 100-year events can happen in back-to-back years or even the same year.
- Over 30 years (i.e., the length of standard home mortgage), the probability of having a 100-year event is 25%.
- Climate change is likely to increase the frequency of extreme events.

from 4 to as many as 28 years between floods.

Incidence of the 10-year flood for the Embarras River at Ste. Marie, IL (03345500). The variability in time between "10-year floods" ranges

LA RIVER WATERSHED MEAN ANNUAL PRECIPITATION 1981-2010

LOS ANGELES

Los Angeles - USC Down

anoga Park

51 50 49R 8

38.7 in / 983 mm

• Mt Wilson

12.9 in / 327 mm

Source: PRISM Climate Group, Oregon State University, 30-yr Normal Precipitation: Annual, 2015

1-YEAR STORM PRECIPITATION OVER 24 HOURS

LOS ANGELES

Los Angeles - USC Downt

23.0 in / 584 mm

2-YEAR STORM PRECIPITATION OVER 24 HOURS

Park 51 50 49

LOS ANGELES

Los Angeles - USC Downt

23.0 in / 584 mm

5-YEAR STORM PRECIPITATION OVER 24 HOURS

25

23.0 in / 584 mm

Max Rainfall (9.4 in / 239 mm) σ Min Rainfall (1.5 in / 38 mm) 0.0 in / 0 mm

10-YEAR STORM PRECIPITATION OVER 24 HOURS

23.0 in / 584 mm

25-YEAR STORM PRECIPITATION OVER 24 HOURS

23.0 in / 584 mm

Max Rainfall (14.2 in / 360 mm) 0

0 Min Rainfall (2.3 in / 58 mm)

0.0 in / 0 mm

50-YEAR STORM PRECIPITATION OVER 24 HOURS

23.0 in / 584 mm

Max Rainfall (16.1 in / 410 mm) 0 0 Min Rainfall (2.5 in / 66 mm) 0.0 in / 0 mm

Source: Los Angeles County GIS Data Portal, Rainfall Intensity, 2011

28

100-YEAR STORM PRECIPITATION OVER 24 HOURS

LOS ANGELES

23.0 in / 584 mm

Source: Los Angeles County GIS Data Portal, Rainfall Intensity, 2011

Mt. Wilson 14.8 in O BURBANK GLENDALE Los Angeles - USC 6.1 in **O** VERNON SOUT GAT LONG BEACH

500-YEAR STORM PRECIPITATION OVER 24 HOURS

23.0 in / 584 mm

STORM RETURN PERIODS

24-hour Precipitation Depth versus Return Period

Source: Los Angeles County GIS Data Portal, Rainfall Intensity, 2011

Los Angeles - USC

EXTREME EVENTS HAPPEN

SUPERSTORM SANDY

Source: Jolliffe, R., Flickr User, 2012, https://flic.kr/p/dpcGmB

Source: Chandler, J., Flickr User, 2017, https://flic.kr/p/Y487SD

OMNI & HOTE

Laboratory

S ·----

ATMOSPHERIC RIVERS

2014

Source: Wikipedia, 2010, https://en.wikipedia.org/wiki/Atmospheric_river#/media/File:Atmos goes11.vapor.x.pacus.x.jpg

-30

2 Al

 monthly the I and a second second second sound perman delayers

By Daniel Avenue, Horns

For Eigh Early, a dress terned tooks the a barn rightly Bastistanian marity is arts Loop Augestern

After California leguline compliantial experimeters, Los reprises invadion's load compared and entitient entities and and hard - writtle straining pro-momentum actions byt haardlend by title was in things - would get all up per bacid at J. A. 's period permettee martipulate marks Early, a single motion time, mapped up a team of Lauranti Pich scondtoni and load op as president This singly ment was approximate in family law drives it a drop that would not have arrages, interforms and safes printed with respective, and recovered a closers of the prodice

-----But more than a page at or pairs of institution because egai in Los Argenni and Affair Childrenia ---starting Entry will reported story for a form lowers as a name And L.A. offering second will be manyly when the set of the last

The time endout it a rist int sould become the log out manifest for legal various its the senantivity has from saled second for antiventity stury. Collars and the defense taken as separate orts much interio wanting i op with a "sound reguly

al he passion wi manufactory spinsters and the Art of Street of Street, or other in from the drog's man

ric_River_G0ES_WV_20101220.1200.

A 16

logical Survey. Officials esti-

ALLEN J. SCHABEN Los Angeles Tim CHILDREN play at the Whittier Narrows Recreation Area. Officials with the U.S. Army Corps of Engineers say that the 60-year-old Whittier Narrows Dam could fail in the event of a very large, very rare storm.

California's 'other big one' - a mega-storm of biblical

By LOUIS SAHAGUN

Scientists call it California's "other big one," and they say it could cause three times as much damage as a major earthquake ripping along the San Andreas fault.

Although it might sound absurd to those who still recall five years of withering drought and mandatory water restrictions, researchers and engineers warn that California may be due for rain of biblical proportions or what experts call an ARkStorm.

This rare mega-storm which some say is rendered all the more inevitable because of climate change would last for weeks and send more than 1.5 million people fleeing as floodwaters inundated cities and formed lakes in the Central Valley and Mojave Desert, according to the U.S. Geo-

This could leave us all wet

scope — could swamp cities in the L.A. Basin, experts say

mate the structural and economic damage from an ARkStorm (for Atmospheric River 1,000) would amount to more than \$725 billion statewide.

In heavily populated areas of the Los Angeles Basin, epic runoff from the San Gabriel Mountains could rapidly overwhelm a flood control dam on the San Gabriel River and unleash floodwaters from Pico Rivera to Long Beach, according to a recent analysis by the U.S. Army Corps of Engineers

In a series of recent public hearings, corps officials told residents that the 60vear-old Whittier Narrows Dam no longer met the agency's tolerable-risk guidelines and could fail in the event of a very large, very rare storm. such as the one that devastated California more than 150 years ago

Specifically, federal engi [See Mega-storm, A10]

under stamm

Ex durate M. Parcourt an Would O'Trees

We have a second state of the second se Court manual, Marcinetters Th time Wright has watched south intelled differe thermouth har buildently associatory sail is herity cleared for could done write account.

or perform the Residential Resarily chester, runting it is halt. Three place were tarked, at least for term, a Date operation of the little activaly bars monthly on at the life acts of

it. want? our adjustitues Thrump's its relate of a hologoal origin store on the burdler would and that had

Participal station rained the sec part study for ste alter is the making of citabile settings. New loss its pressure another form and tradition monophil day for one antigented spanning in the

IN AN INCOMENDATION CONTACT a designer, maintain its case section designing, server and public subject index () reacial blood, or ning how the tax under any other ad

Source: Sahagun, L. LA Times. February 2019, https://www.latimes.com/local/california/la-me-In-mega-storm-dam-failure-20190218-story.

ELECTION 2020

s second all such ware approace property in the hell 33

CLIMATE CHANGE

Current rainfall design frequencies may underestimate future climate conditions.

Source: Modified from AghaKouchak, Amir, Elisa Ragno, Charlotte Love, and Hamed Moftakhari. (University of California, Irvine). 2018. Projected changes in California's precipitation intensity-duration-frequency curves. California's Fourth Climate Change Assessment, California Energy Commission. Publication Number: CCCA4-CEC-2018-005, Geosyntec, OLIN

ANALYSIS LOCATIONS

Section at Glendale Narrows (River Mile 29) -

Section at Firestone Blvd (River Mile 13)

Source: Geosyntec, OLIN

1 50 49 48 47 46 45 44 43 42 41 40

EXISTING 2-YEAR STORM EVENT HEC-HMS Model: Glendale Narrows (River Mile 29)

stin

50

Channel Section

0 -30 eosyntec, OLIN

CHANNEL SECTION

River Mile 29

WATERSHED MAP

Note: Width of river represents flow, not floodway width
EXISTING 2-YEAR STORM EVENT HEC-HMS Model: Glendale Narrows (River Mile 29)

0-

-30 -

Geosyntec, OLIN

EXISTING 100-YEAR STORM EVENT HEC-HMS Model: Glendale Narrows (River Mile 29)

30

Note: Width of river represents flow, not floodway width

EXISTING 2-YEAR STORM EVENT HEC-HMS Model: Firestone Blvd. (River Mile 13)

River Mile 13

Note: Width of river represents flow, not floodway width

EXISTING 100-YEAR STORM EVENT HEC-HMS Model: Firestone Blvd. (River Mile 13)

Note: Width of river represents flow, not floodway width

River Mile 13

Q&AAND DISCUSSION

Source: USCAE, Los Angeles District, EHyperionAve1928, http://cespl.maps.arcgis.com/apps/MapSeries/index.html?appid=e15694dbf7c54f8c96285a0e74039e69

TIMELINE OF THE LA RIVER

Source: Corps of Engineers Los Angeles District, 1895-1915, Farmland and the Los Angeles River, https://commons.wikimedia.org/wiki/File:Farmland_and_the_Los_Angeles_River_looking_north_from_Elysian_Park_toward_Mount_ Washington,_1895-1915_(CHS-2209).jpg

HOW DID WE GET HERE?

HISTORY OF FLOODING AND FLOODPLAINS

A RECENT STORM

CURRENT **PROTECTION AND FLOOD RISK**

HISTORICAL FLOODING AND RIVER PATHS

Areas Subject to Inundation

Historical River Paths

Source: Based on Blake Gumprecht, "The Los Angeles River: Its Life, Death, and Possible Rebirth.", 2001, California State University, Northridge Environmental Geography Lab, Historical Ecology, 2008, Geosyntec, OLIN

Canoga Park

Reseda

Van Nuys

Sherman Daks

Studio City

HISTORICAL RAINFALL Events

- Annual average rainfall (Downtown City of Los Angeles)
- Major storm and flooding events
- X Major droughts

ntown City of Los Angeles) ents

1931 FLOOD

1934 FLOOD

DRUGS

THE NRY S DACIENCE PHARMACY I A River in 1934

Source: Tessa Digital Collections of the Los Angeles Public Library

Source: Tessa Digital Collections of the Los Angeles Public Li

1938 FLOOD

urce: Los Angeles Times, https

A) LA River flood damage to rail bridge near Figueroa St. Bridge

C) LA River flood damage to rail bridge near Figueroa St. Bridge

om Boyle Heights.

5-9

|| Flooding damage along the LA River near Griffith Park

1938 Griffith Pa

D) Colfax Avenue bridge damage along the LA River

1938 FLOOD

RM 30) Flooding damage at the bend in the LA River near what is now the Ferraro Fields

Source: University of Southern California. Libraries & California Historical Society, View of the flooded Los Angeles River, showing the Griffith Park airport, 193

1969 FLOOD

LA River at Los Feliz Boulevard

LA River bridge damage (location unknown)

1980 FLOOD

House along Topanga Canyon, Santa Monica Mountains

San Gabriel River below the Sante Fe Dam

IMPROVEMENTS AFTER THE 1980 FLOOD

1877 URBAN FOOTPRINT

Historical Urban Footprint

1877

Source: Angel, S., J. Parent, D. L. Civco and A. M. Blei, 2010. Atlas of Urban Expansion, Cambridge MA: Lincoln Institute of Land Policy

1907 URBAN FOOTPRINT

Historical Urban Footprint

Source: Angel, S., J. Parent, D. L. Civco and A. M. Blei, 2010. Atlas of Urban Expansion, Cambridge MA: Lincoln Institute of Land Policy

1937 URBAN FOOTPRINT

Canoga

Historical Urban Footprint

1950 URBAN FOOTPRINT

Canoga Park

Historical Urban Footprint

Source: Angel, S., J. Parent, D. L. Civco and A. M. Blei, 2010. Atlas of Urban Expansion, Cambridge MA: Lincoln Institute of Land Policy

1970 URBAN FOOTPRINT

Canog

Historical Urban Footprint

Source: Angel, S., J. Parent, D. L. Civco and A. M. Blei, 2010. Atlas of Urban Expansion, Cambridge MA: Lincoln Institute of Land Policy

2010 URBAN FOOTPRINT

Historical Urban Footprint

Source: Angel, S., J. Parent, D. L. Civco and A. M. Blei, 2010. Atlas of Urban Expansion, Cambridge MA: Lincoln Institute of Land Policy

Canoq

NEARLY ALL OF THE LA RIVER CORRIDOR IS DEVELOPED

LOS ANGELES

Developed Land Cover of the LA River Watershed	2001	2006	2011	
Developed, Open Space	11.1%	10.7%	10.4%	-
Developed, Low Intensity	16.3 %	15.9 %	15.8%	-
Developed, Medium Intensity	25.4 %	26.0 %	26.3 %	+
Developed, High Intensity	8.6%	9.0%	9.2%	+

LA COUNTY POPULATION AND DEVELOPMENT

— Population (LA County)

— Percent Impervious (LA River Watershed)

Source: Cheyenne Cummings, "Analysis and Implications of Impervious Surface Change Due to Urbanization in the Los Angeles River" (master's thesis, California State University Dominguez Hills, 2016). "Historical General Population City & County of Los Angeles", Los Angeles Almanac, 1850-2010, http://www.laalmanac.com/population/po02.php

HOW DID WE GET HERE?

HISTORY OF FLOODING AND FLOODPLAINS

A RECENT STORM

CURRENT **PROTECTION AND FLOOD RISK**

CONTEXT - RECENT STORM (FEB 2, 2019)

ABC News 7, Rain Swollen Los Angeles River Roars in Glendale: https://abc7.com/weather/video-rain-swollen-los-angeles-river-roars-in-glendale/5118212/

FLOW RATES ON 2 FEBRUARY 2019, 1:37 PM

Source: Los Angeles County Area Streamflow Data, Accessed Feb 2, 2019, http://resreg.spl.usace.army.mil/cgi-bin/gMap.cgi?larF

FLOW RATES ON 2 FEBRUARY 2019

Source: Los Angeles County Area Streamflow Data, Accessed Feb 2, 2019, http://resreg.spl.usace.army.mil/cgi-bin/gMap.cgi?larF

B) Tujunga (~River Mile 37.5) 20,000 Capacity = 48,700 cfs 15,000 (f) 10,000 5,000 03:00 09:00 12:00 00:00 06:00 02Feb2019 D) Wardlow (~River Mile 4) 70,000 Capacity = 182,000 cfs 60,000 50,000 Flow (cfs) 40,000 30,000 20,000 10,000-0 12:00 00:00 03:00 09:00 06:00

HOW MUCH RAIN FELL?

Source: Los Angeles County Area Streamflow Data, Accessed Feb 2, 2019, http://resreg.spl.usace.army.mil/cgi-bin/gMap.cgi?larF

2-YEAR STORM PRECIPITATION OVER 24 HOURS

Park 51 50 49

LOS ANGELES

Los Angeles - USC Downt

23.0 in / 584 mm

 \overline{o} Max Rainfall (6.25 in /159 mm) • Min Rainfall (1.00 in / 25 mm) 0.0 in / 0 mm

Source: Los Angeles County GIS Data Portal, Rainfall Intensity, 2011

HOW DID WE GET HERE?

HISTORY OF FLOODING AND FLOODPLAINS

A RECENT STORM

CURRENT PROTECTION AND FLOOD RISK

CURRENT PROTECTION LEVEL

Level of Protection (interpolated)¹

- < 10 yr
- < 50 yr
- < 100 yr
- > 100 yr

Level of Protection (point data)^{2,3}

< 10 yr
 < 50 yr
 < 100 yr
 > 100 yr

Footnotes:

 Level of channel protection within ARBOR Study reaches from U.S. Army Corps of Engineers (USACE): Los Angeles District. 2015. Los Angeles River Ecosystem Restoration Integrated Feasibility Report, Final Feasibility Report and Environmental Impact Statement/Environmental Impact Report, Appendix E. Table 17: Original Design Discharge and Existing Channel Capacity.
 Level of channel protection from downstream of Sepulveda to upstream of ARBOR Study reaches and downstream of ARBOR Study reaches to Rio Hondo confluence interpolated from point locations within USACE: Los Angeles District. 1991. Los Angeles County Drainage Area: Review, Part I Hydrology Technical Report: Base Conditions. Plate 4: Levels of Protection Base Conditions.
 Level of channel protection from Rio Hondo confluence to Pacific Ocean interpolated from point locations within USACE: Los Angeles District. 1999. Los Angeles River Improvement Projects Including Rio Hondo and Compton Creek. Final Design Memorandum No. 3 & No 5. Table A-2: Revised Maximum Deliverable Discharge and USACE: Los Angeles District. 1991. Los Angeles County Drainage Area: Review, Part II Hydrology Report, Project Alternatives. Plate 11: NED Plan Levels of Protection.

Source: Geosyntec, OLIN

 Canoga Reseda

 Karka

 Van Nuys

 Sherman

 CHY

LOS ANGELES

Q&AAND DISCUSSION

REDUCE FLOWS INTO THE CHANNEL

INCREASE CHANNEL CAPACITY

TOOLS AND ANALYSES

HYDROLOGY & HYDRAULICS MODELING TOOLS

H&H MODELING TOOLS

	UNIT HYDROLOGY	LARGER		
	HYDROCALC	LSPC	HEC-HMS	MANNIN
NAME	HydroCalc	Loading Simulation Program C++	Hydrologic Engineering Center – Hydrologic Modeling System	Manning's Equ
DEVELOPER	LA County Public Works	LA County Public Works	US Army Corps of Engineers	Robert Manı
DATE	2018	2013	2018	1889
PURPOSE	Modified Rational Method for local scale flood and drainage analyses	Designed for water quality best management practice	Designed explicitly for flood risk management	Uniform and s state analys channels
	HYDROCALC	LSPC	HEC-HMS	MANNING

HYDRAULICS

CHANNELS

NG'S

quation

nning

HEC-RAS

Hydrologic Engineering Center – River Analysis System

> US Army Corps of Engineers

2018

steadysis of els Varying and unsteady analysis of channels and floodplains

G'S

HEC-RAS
HYDROCALC

- Developed by LA County Public Works
- Modified Rational Method
- Local scale flood analyses
- Drainage anaylses
- Easy to use interface

Inputs	-		Outputs	
Project Name	Project		Modeled (1-yr) Rainfall Depth (in)	1.83
Subarea ID	Subarea 1A		Peak Intensity (in/hr)	0.47
Area (ac)	40		Undeveloped Runoff Coefficient (Cu)	0.55
Flow Path Length (ft)	1500		Developed Runoff Coefficient (Cd)	0.58
Flow Path Slope (vft/hft)	0.01		Time of Concentration (min)	30
24-hr, 50-yr Rainfall Depth (in)	6.50		Clear Peak Flow Rate (cfs)	11.1
Percent Impervious (0.01-1.0)	0.10		Burned Peak Flow Rate (cfs)	11.12
Soil Type (2-180)	2	•	24-Hr Clear Runoff Volume (ac-ft)	1.51
Design Storm Frequency	1-yr		24-Hr Clear Runoff Volume (cu-ft)	6586
Fire Factor	0	-		
12	Hydrog	graph (Project: Subarea 1A)	
10 - 8 - 6 -	Hydrog	graph (Project: Subarea 1A)	
10 - 8 -	Hydrog	graph (Project: Subarea 1A)	
10 - 8 - 6 - 4 -		600	Project: Subarea 1A) 800 1000 1200 ne (minutes)	14

Source: http://dpw.lacounty.gov/wrd/publication/Engineering/hydrology/HydroCalc.zip

Close

1400

1600

-

11.1223

11.1223 1.5122

65869.2981

X

H&H MODELING TOOLS

		HYDROLOGY		
	UNIT HYDROLOGY	LARGER	WATERSHED	
	HYDROCALC	LSPC	HEC-HMS	MANNIN
NAME	HydroCalc	Loading Simulation Program C++	Hydrologic Engineering Center – Hydrologic Modeling System	Manning's Equ
DEVELOPER	LA County Public Works	LA County Public Works	US Army Corps of Engineers	Robert Manı
DATE	2018	2013	2018	1889
PURPOSE	Modified Rational Method for local scale flood and drainage analyses	Designed for water quality best management practice	Designed explicitly for flood risk management	Uniform and s state analys channels
	HYDROCALC	LSPC	HEC-HMS	MANNING

HYDRAULICS

CHANNELS

NG'S

quation

nning

HEC-RAS

Hydrologic Engineering Center – River Analysis System

> US Army Corps of Engineers

2018

steadysis of els Varying and unsteady analysis of channels and floodplains

G'S

HEC-RAS

LOADING SIMULATION PROGRAM IN C++ (LSPC)

- Developed by LA County Public Works as part of Watershed Management Modeling System (WMMS)
- Primarily for water quality
- Modified to assess supply benefits including climate change
- Evaluates long-term time-series (i.e., years to decades)

H&H MODELING TOOLS

		HYDROLOGY		
	UNIT HYDROLOGY	LARGER	WATERSHED	
	HYDROCALC	LSPC	HEC-HMS	MANNIN
NAME	HydroCalc	Loading Simulation Program C++	Hydrologic Engineering Center - Hydrologic Modeling System	Manning's Equ
DEVELOPER	LA County Public Works	LA County Public Works	US Army Corps of Engineers	Robert Manı
DATE	2018	2013	2018	1889
PURPOSE	Modified Rational Method for local scale flood and drainage analyses	Designed for water quality best management practice	Designed explicitly for flood risk management	Uniform and s state analys channels
	HYDROCALC	LSPC	HEC-HMS	MANNING

HYDRAULICS

CHANNELS

NG'S

quation

nning

HEC-RAS

Hydrologic Engineering Center – River Analysis System

> US Army Corps of Engineers

2018

steadysis of els Varying and unsteady analysis of channels and floodplains

G'S

HEC-RAS

HEC-HMS

Precipitation runoff simulation

• Event based precipitation events

(e.g., 2-year, 100-year, ...)

- Infiltration
- Surface runoff
- Routing through drains and channels
- Flood control basins

U.S. Army Corps of Engineers, Los Angeles District. Los Angeles County Drainage Area (LACDA): Hydrologic Analysis. 2010. Figure 5: LACDA - HEC-HMS Model Schematic.

H&H MODELING TOOLS

		HYDROLOGY		
	UNIT HYDROLOGY	LARGER	NATERSHED	
	HYDROCALC	LSPC	HEC-HMS	MANNIN
NAME	HydroCalc	Loading Simulation Program C++	Hydrologic Engineering Center - Hydrologic Modeling System	Manning's Equ
DEVELOPER	LA County Public Works	LA County Public Works	US Army Corps of Engineers	Robert Manr
DATE	2018	2013	2018	1889
PURPOSE	Modified Rational Method for local scale flood and drainage analyses	Designed for water quality best management practice	Designed explicitly for flood risk management	Uniform and st state analysi channels
	HYDROCALC	LSPC	HEC-HMS	MANNING

HYDRAULICS

CHANNELS

HEC-RAS NG'S Hydrologic Engineering **Center - River Analysis** uation System US Army Corps of nning Engineers 2018 Varying and unsteady steadyanalysis of channels sis of and floodplains S

HEC-RAS

MANNING'S EQUATION

Empirically derived in 1889

$$Q = \frac{KAR^{2/3}S^{1/2}}{n}$$

Online Calculator: http://onlinecalc.sdsu.edu/onlinechannel01.php •

n = 0.06

n = 0.03

n = 0.016

MANNING'S EQUATION

Empirically derived in 1889

$$Q = \frac{K A R^{2/3} S^{1/2}}{n}$$

Q = flow rate

- A = cross-sectional area of flow
- *P* = wetted perimeter
- R = hydraulic radius = A/P
- S = slope of the channel at the point of measurement
- n = surface roughness (based upon channel material and condition)
- K = constant dependent upon units

Online Calculator: http://onlinecalc.sdsu.edu/onlinechannel01.php

Manning's n for Channels (Chow, 1959)

Type of Channel and Description	Minimum	Normal	Maximum
4. Excavated or Dredged Channels			
a. Earth, straight, and uniform			
1. clean, recently completed	0.016	0.018	0.020
2. clean, after weathering	0.018	0.022	0.025
3. gravel, uniform section, clean	0.022	0.025	0.030
4. with short grass, few weeds	0.022	0.027	0.033
b. Earth, winding, and sluggish			
1. no vegetation	0.023	0.025	0.030
2. grass, some weeds	0.025	0.030	0.033
3. dense weeds or aquatic plants in deep channels	0.030	0.035	0.040
4. earth bottom and rubble sides	0.028	0.030	0.035
5. stony bottom and weedy banks	0.025	0.035	0.040
6. cobble bottom and clean sides	0.030	0.040	0.050
e. Channels not maintained, weeds and brush uncut			
1. dense weeds, high as flow depth	0.050	0.080	0.120
2. clean bottom, brush on sides	0.040	0.050	0.080
3. same as above, highest stage of flow	0.045	0.070	0.110
4. dense brush, high stage	0.080	0.100	0.140
5. Lined or Constructed Channels			
c. Concrete			
1. trowel finish	0.011	0.013	0.015
2. float finish	0.013	0.015	0.016
3. finished, with gravel on bottom	0.015	0.017	0.020
d. Concrete bottom float finish with sides of:			
1. dressed stone in mortar	0.015	0.017	0.020
2. random stone in mortar	0.017	0.020	0.024
3. cement rubble masonry, plastered	0.016	0.020	0.024
4. cement rubble masonry	0.020	0.025	0.030
5. dry rubble or riprap	0.020	0.030	0.035
e. Gravel bottom with sides of:			
1. formed concrete	0.017	0.020	0.025
2. random stone mortar	0.020	0.023	0.026

MANNING'S

MANNING'S EQUATION

Does not account for upstream/downstream effects or hydraulic structures (e.g., bridges)

$$Q = \frac{K A R^{2/3} S^{1/2}}{n}$$

Variable		Dense Vegetation	Well-maintained Grasses	
constant	K	1.49 ft ^{1/3} /s	1.49 ft ^{1/3} /s	
cross-sectional area of flow	А	4,000 ft ²	4,000 ft ²	
hydraulic radius	R	15	15	
slope of the channel	S	0.005	0.005	
surface roughness	n	0.06	0.03	
flow rate	Q	43,000 cfs	85,000 cfs	

160,000 cfs

0.016

0.005

15

4,000 ft²

1.49 ft ^{1/3}/s

Concrete

H&H MODELING TOOLS

		HYDROLOGY		
	UNIT HYDROLOGY	LARGER	WATERSHED	
	HYDROCALC	LSPC	HEC-HMS	MANNIN
NAME	HydroCalc	Loading Simulation Program C++	Hydrologic Engineering Center - Hydrologic Modeling System	Manning's Equ
DEVELOPER	LA County Public Works	LA County Public Works	US Army Corps of Engineers	Robert Manr
DATE	2018	2013	2018	1889
PURPOSE	Modified Rational Method for local scale flood and drainage analyses	Designed for water quality best management practice	Designed explicitly for flood risk management	Uniform and st state analys channels
	HYDROCALC	LSPC	HEC-HMS	MANNING

HYDRAULICS

CHANNELS

NG'S

quation

nning

steadysis of ls

HEC-RAS

Hydrologic Engineering Center - River Analysis System

> US Army Corps of Engineers

2018

Varying and unsteady analysis of channels and floodplains

HEC-RAS

HEC-RAS

- Steady and unsteady hydraulic computations for network of open channels and floodplain
- 1-D Energy equation
- 2-D Shallow water equation
- Combine 1D/2D
 - (i.e., 1-D for channel, 2-D for floodplain)
- Accounts for upstream and downstream conditions

HEC-RAS

Q&AAND DISCUSSION

Source: OLIN

SOLUTIONS AND OPORTUNITIES

REDUCE FLOWS USING LID / BMP / DISTRIBUTED STORAGE

LOW IMPACT DEVELOPMENT (LID) EXAMPLES

Capture and retain the 85th percentile precipitation event runoff

- Standalone Bioretention
- Bioretention + Drywells
- Pervious Pavement + Drywells
- Water Quality
- Conservation

GREEN STREETS

Green infrastructure along, on, and within the public right-of-way

- Rain Gardens
- Bioretention
- Permeable Pavement

a la lan

- Infiltration Trench
- Drywells

REGIONAL PROJECTS

Water quality regional project examples

- Above Ground Retention
- Underground Retention/Cisterns

REGIONAL PROJECTS

Project Examples

Flood Risk Reduction Sepulveda Basin

Water Supply Tujunga Spreading Grounds

Source: Sepulveda Basin Wildlife, https://sepulvedabasinwildlife.org/wildlifeareas.html, & Los Angeles County Public Works

REGIONAL PROJECTS

	WATER QUALITY	WATER SUPPLY
PROJECT FOOTPRINT	0.2 - 15 acres or less	15-160 acres
DESIGN CAPACITY	85 th percentile event or smaller	Up to 5 year storm
PRIMARY PURPOSE	Water quality improvement	Water supply benefits
CONSTRUCTION COST	\$\$	\$ \$ \$ \$

50+ acres	
50 year storm or greater	
Flood risk reduction	
\$\$\$\$	

WATER QUALITY OBJECTIVES

Upper LA River (ULAR) Enhanced Water Quality Management Plan (EWMP)

5,186 AF total in ULAR by 2037

```
Total Regional Best Management Practices (BMPs): 3,449 AF
```


Source: ULAR EWMP (2016), https://www.waterboards.ca.gov/losangeles/water_issues/programs/stormwater/municipal/watershed_management/los_angeles/upper_losangeles/20160127/UpperLARiver_mainbody_revEWMP_Jan2016.pdf

Green Streets: 1,196 AF

Total LID Best Management Practices (BMPs): **541 AF**

Residual Toxics Source Control Measures

WATER QUALITY OBJECTIVES

EFFECT OF URBANIZATION

Source: U.S. Army Corps of Engineers: Los Angeles District. 1991. Los Angeles County Drainage Area: Review, Part I, Hydrology Technical Report, Base Conditions

PLATE 102

EFFECT OF URBANIZATION

Source: U.S. Army Corps of Engineers: Los Angeles District. 1991. Los Angeles County Drainage Area: Review, Part I, Hydrology Technical Report, Base Conditions, Geosyntec, OLIN

PLATE 102

EFFECT OF URBANIZATION

Source: U.S. Army Corps of Engineers: Los Angeles District. 1991. Los Angeles County Drainage Area: Review, Part I, Hydrology Technical Report, Base Conditions, Geosyntec, OLIN

H&H MODELING TOOLS

		HYDROLOGY		
	UNIT HYDROLOGY	LARGER	WATERSHED	
	HYDROCALC	LSPC	HEC-HMS	MANNIN
NAME	HydroCalc	Loading Simulation Program C++	Hydrologic Engineering Center – Hydrologic Modeling System	Manning's Equ
DEVELOPER	LA County Public Works	LA County Public Works	US Army Corps of Engineers	Robert Manı
DATE	2018	2013	2018	1889
PURPOSE	Modified Rational Method for local scale flood and drainage analyses	Designed for water quality best management practice	Designed explicitly for flood risk management	Uniform and s state analys channels
	HYDROCALC	LSPC	HEC-HMS	MANNING

HYDRAULICS

CHANNELS

NG'S

quation

nning

HEC-RAS

Hydrologic Engineering Center – River Analysis System

> US Army Corps of Engineers

2018

steadysis of els Varying and unsteady analysis of channels and floodplains

G'S

HEC-RAS

HYDROCALC

Flow (Cubic Feet Per Second)

Source: http://dpw.lacounty.gov/wrd/publication/Engineering/hydrology/HydroCalc.zip

Hydrograph: Sub Area 1

- E.g. 40 acre parcel
- LIDs/BMP "filled up" within first 4 hours of a storm
- Significant benefit to water quality and water conversation
- Provides urban green space
- Minimal ability to impact peak flow rate
- Minimal impact to reducing stormwater volume in channel during large storm

100-Year Storm

85th Percentile Storm LID Design Requirement

WORKING SESSION BREAK

Source: OLIN

HydroCalc Example Sites

Site Locations

Source: Geosyntec, OLIN

Canoga Rark

50

Reseda

NW San

Fernando

Valley Van Nuys

Sherman 40 Daks

Studio

gle Subarea Multi-Subarea					
nputs			Outputs		
Project Name	Project		Modeled (1-yr) Rainfall Depth (in)	1.8395	
Subarea ID	Subarea 1A		Peak Intensity (in/hr)	0.4728	
vrea (ac)	40		Undeveloped Runoff Coefficient (Cu)	0.5535	
low Path Length (ft)	1500		Developed Runoff Coefficient (Cd)	0.5881	
low Path Slope (vft/hft)	0.01		Time of Concentration (min)	30	
4-hr, 50-yr Rainfall Depth (in)	6.50		Clear Peak Flow Rate (cfs)	11.1223	
ercent Impervious (0.01-1.0)	0.10		Burned Peak Flow Rate (cfs)	11.1223	_
ioil Type (2-180)	2	•	24-Hr Clear Runoff Volume (ac-ft)	1.5122	
esign Storm Frequency	1-yr		24-Hr Clear Runoff Volume (cu-ft)	65869.2981	
Fire Factor	0	-			
12	Hydro	ograph (Project: Subarea 1A)	-	1
	Hydro	ograph (Project: Subarea 1A)	-	1
12	Hydro	ograph (Project: Subarea 1A)	-	1
	Hydro	ograph (Project: Subarea 1A)	-	
10 - 8 -	Hydro	ograph (Project: Subarea 1A)		-
10 - 8 -	Hydro	ograph (Project: Subarea 1A)		-
10 - 8 - Ş	Hydro	ograph (Project: Subarea 1A)		
Flow (cfs) 9 - 8	Hydro	ograph (Project: Subarea 1A)		
Flow (cfs) 9 - 8	Hydro	ograph (Project: Subarea 1A)		
10 - 8 - 6 - 6 - 6 - 6 - 4 - 2 - 0 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6					
10 - 8 - (st) wold 4 -	Hydro	600	Project: Subarea 1A) 800 1000 1200 te (minutes)	1400	1600

Source: http://dpw.lacounty.gov/wrd/publication/Engineering/hydrology/HydroCalc.zip

	1.				
Inputs	1	Outputs			
Project Name	Project	Modeled (1-yr) Rainfall Depth (in)	1.8395		
Subarea ID	Subarea 1A	Peak Intensity (in/hr)	0.4728		
Area (ac)	40	Undeveloped Runoff Coefficient (Cu)	0.5535		
Flow Path Length (ft)	1500	Developed Runoff Coefficient (Cd)	0.5881		
Flow Path Slope (vft/hft)	0.01	Time of Concentration (min)	30		
24-hr, 50-yr Rainfall Depth (in)	6,50	Clear Peak Flow Rate (cfs)	11.1223	l l r	
Percent Impervious (0.01-1.0)	0.10	Burned Peak Flow Rate (cfs)	11.1223		put
Soil Type (2-180)	2	• 24-Hr Clear Runoff Volume (ac-ft)	1.5122		
Design Storm Frequency	1-уг	• 24-Hr Clear Runoff Volume (cu-ft)	65869.2981		
Fire Factor	0	•			
12	Hydrograp	oh (Project: Subarea 1A)			
	Hydrograt	oh (Project: Subarea 1A)			
10 - 8 -	Hydrogra	oh (Project: Subarea 1A)			
10 - 8 - 95	Hydrogra	oh (Project: Subarea 1A)			
10 - 8 -	Hydrogra	oh (Project: Subarea 1A)			
10 - 8 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6	Hydrogra	oh (Project: Subarea 1A)			
10 - 8 - 6 - 9 - 9 - 2 -			1400 160		
10 - 8 - (sp) Mole 4 -	Hydrograf 400 600	bh (Project: Subarea 1A) 800 1000 1200 Time (minutes)	1400 160	0	

Source: http://dpw.lacounty.gov/wrd/publication/Engineering/hydrology/HydroCalc.zip

igle Subarea Multi-Subarea			
nputs		Outputs	
Project Name	Project	Modeled (1-yr) Rainfall Depth (in)	1.8395
Subarea ID	Subarea 1A	Peak Intensity (in/hr)	0.4728
Area (ac)	40	Undeveloped Runoff Coefficient (Cu)	0.5535
Flow Path Length (ft)	1500	Developed Runoff Coefficient (Cd)	0.5881
Flow Path Slope (vft/hft)	0.01	Time of Concentration (min)	30
24-hr, 50-yr Rainfall Depth (in)	6,50	Clear Peak Flow Rate (cfs)	11.1223
Percent Impervious (0.01-1.0)	0.10	Burned Peak Flow Rate (cfs)	11.1223
Soil Type (2-180)	2	• 24-Hr Clear Runoff Volume (ac-ft)	1.5122
Design Storm Frequency	1-yr	24-Hr Clear Runoff Volume (cu-ft)	65869.2981
Fire Factor	0	•	
12	Hydrogra	ph (Project: Subarea 1A)	
12	Hydrogra	ph (Project: Subarea 1A)	
10 -	Hydrogra	ph (Project: Subarea 1A)	
10 - 8 -	Hydrogra	ph (Project: Subarea 1A)	
10 - 8 -	Hydrogra	ph (Project: Subarea 1A)	
10 - 8 - <u>\$</u> 5	Hydrogra	ph (Project: Subarea 1A)	
10 - 8 -	Hydrogra	ph (Project: Subarea 1A)	
10 - 8 - 6 - 4 -	Hydrogra	ph (Project: Subarea 1A)	
10 - 01 - 8 - 01 - 8 - 01 - 8 - 01 - 8 - 01 - 8 - 01 - 01	Hydrogra	ph (Project: Subarea 1A)	
10 - 8 - 6 - 6 - 6 - 4 - 2 - 0 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6			100
10 - 8 - 6 - 6 - 4 -	Hydrogra 400 600		1400 1600
10 - 8 - 6 - 6 - 6 - 4 - 2 - 0 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6		800 1000 1200	1400 1600 Close

Subarea

vft

hft

Source: http://dpw.lacounty.gov/wrd/publication/Engineering/hydrology/HydroCalc.zip

ngle Subarea Multi-Subarea			
inputs		Outputs	
Project Name	Project	Modeled (1-yr) Rainfall Depth (in)	1.8395
Subarea ID	Subarea 1A	Peak Intensity (in/hr)	0.4728
Area (ac)	40	Undeveloped Runoff Coefficient (Cu)	0.5535
flow Path Length (ft)	1500	Developed Runoff Coefficient (Cd)	0.5881
flow Path Slope (vft/hft)	0.01	Time of Concentration (min)	30
24-hr, 50-yr Rainfall Depth (in)	6.50	Clear Peak Flow Rate (cfs)	11.1223
ercent Impervious (0.01-1.0)	0.10	Burned Peak Flow Rate (cfs)	11.1223
oil Type (2-180)	2	♥ 24-Hr Clear Runoff Volume (ac-ft)	1.5122
esign Storm Frequency	1-yr	 24-Hr Clear Runoff Volume (cu-ft) 	65869.2981
Fire Factor	0	*	
hart			

Source: http://dpw.lacounty.gov/wrd/publication/Engineering/hydrology/HydroCalc.zip

 Image: Series of the series

HydroCalc Example Sites

Site Locations

Precipitation

- Selected 50 yr storm, 24 hr Precipitation Isohyets (in.)
- 50 yr storm, 24 hr
 Precipitation Isohyets (in.)

Source: Geosyntec, OLIN, Content modified from http://www.ladpw.org/wrd/publication/Engineering/ hydrology/rain_depth.zip

104

HydroCalc 1.0.3			- 0
inputs		Outputs	
Project Name	Project	Modeled (1-yr) Rainfall Depth (in)	1.8395
Subarea ID	Subarea 1A	Peak Intensity (in/hr)	0.4728
Area (ac)	40	Undeveloped Runoff Coefficient (Cu)	0.5535
Flow Path Length (ft)	1500	Developed Runoff Coefficient (Cd)	0.5881
flow Path Slope (vft/hft)	0.01	Time of Concentration (min)	30
24-hr, 50-yr Rainfall Depth (in)	6.50	Clear Peak Flow Rate (cfs)	11.1223
Percent Impervious (0.01-1.0)	0.10	Burned Peak Flow Rate (cfs)	11.1223
Soil Type (2-180)	2	€ 24-Hr Clear Runoff Volume (ac-ft)	1.5122
Design Storm Frequency	1-уг	24-Hr Clear Runoff Volume (cu-ft)	65869.2981
	2	trans and the second seco	
Fire Factor Chart 12 10		• (Project: Subarea 1A)	
Chart 12			
Chart 12 10 8 (sp) Mol 4			
Chart 12 10 (sto) wolf 6			
Chart 12 10 8 (sp) Mol 4			1400 1600

E 50% 060% HydroCalc Example Sites Site Locations % Impervious 0-10% 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80% 80-90%

Source: Geosyntec, OLIN, LA County GIS Data Portal NLCD 2011 Impervious Surface.

90-100%

ingle Subarea Multi-Subarea			
Inputs	-	Outputs	
Project Name	Project	Modeled (1-yr) Rainfall Depth (in)	1.8395
Subarea ID	Subarea 1A	Peak Intensity (in/hr)	0.4728
Area (ac)	40	Undeveloped Runoff Coefficient (Cu)	0.5535
Flow Path Length (ft)	1500	Developed Runoff Coefficient (Cd)	0.5881
Flow Path Slope (vft/hft)	0.01	Time of Concentration (min)	30
24-hr, 50-yr Rainfall Depth (in)	6.50	Clear Peak Flow Rate (cfs)	11.1223
Percent Impervious (0.01-1.0)	0.10	Burned Peak Flow Rate (cfs)	11.1223
Soil Type (2-180)	2	24-Hr Clear Runoff Volume (ac-ft)	1.5122
Design Storm Frequency	1-yr	• 24-Hr Clear Runoff Volume (cu-ft)	65869.2981
Fire Factor	0	•	
Chart	Lindesara	ab (Decide Cubaras 1A)	
Chart 12	Hydrogra	ph (Project: Subarea 1A)	
12 10 8	Hydrogra	ph (Project: Subarea 1A)	
12 10 8 -	Hydrogra	ph (Project: Subarea 1A)	
- 01 - 8 - 6 - 6	Hydrogra	ph (Project: Subarea 1A)	

Close

HydroCalc Example Sites

D 15

Site Locations

Common Soil Classes (2-180)

- 06 Hanford Fine Sandy Loam
- 13 Ramona Loam
- 14 Romona Sandy Loam
- 15 Tujunga Fine Sandy Loam
- 16 Yolo Loam
- 55 Upper LA River

Source: Geosyntec, OLIN, Content modified from http://www.ladpw.org/wrd/publication/Engineering/hydrology/soil_types.zip

Source: http://dpw.lacounty.gov/wrd/publication/Engineering/hydrology/HydroCalc.zip

Save as CSV

Save as PDF

			- 0	
ngle Subarea Multi-Subarea				
Inputs		Outputs		
Project Name	Project	Modeled (1-yr) Rainfall Depth (in)	1.8395	
Subarea ID	Subarea 1A	Peak Intensity (in/hr)	0.4728	
Area (ac)	40	Undeveloped Runoff Coefficient (Cu)	0.5535	
Flow Path Length (ft)	1500	Developed Runoff Coefficient (Cd)	0.5881	
Flow Path Slope (vft/hft)	0.01	Time of Concentration (min)	30	
24-hr, 50-yr Rainfall Depth (in)	6.50	Clear Peak Flow Rate (cfs)	11.1223	
Percent Impervious (0.01-1.0)	0.10	Burned Peak Flow Rate (cfs)	11,1223	
Soil Type (2-180)	2	24-Hr Clear Runoff Volume (ac-ft)	1.5122	
Design Storm Frequency	1-yr	24-Hr Clear Runoff Volume (cu-ft)	65869.2981	
Fire Factor	0	•		
8 -				
cts)				
2 6				
No				
Flow			(
MOLL 4				
		Д		
4-				
4	400 600	800 1000 1200	1400 16	00
4	400 600	800 1000 1200 Time (minutes)	1400 16	00
4	400 600 Save as CSV		1400 16 Close	00

Source: http://dpw.lacounty.gov/wrd/publication/Engineering/hydrology/HydroCalc.zip

HydroCalc 1.0.3				
ingle Subarea Multi-Subarea		0.000		
Inputs	(Sec.)	Outputs	4.0305	
Project Name	Project	Modeled (1-yr) Rainfall Depth (in)	1.8395	
Subarea ID	Subarea 1A	Peak Intensity (in/hr)	0.4728	
Area (ac)	40	Undeveloped Runoff Coefficient (Cu)		
Flow Path Length (ft)	1500	Developed Runoff Coefficient (Cd)	0.5881	
Flow Path Slope (vft/hft)	0.01	Time of Concentration (min)	30	
24-hr, 50-yr Rainfall Depth (in)	6,50	Clear Peak Flow Rate (cfs)	11.1223	
Percent Impervious (0.01-1.0)	0.10	Burned Peak Flow Rate (cfs)	11.1223	
Soil Type (2-180)	2	 24-Hr Clear Runoff Volume (ac-ft) 	1.5122	
Design Storm Frequency	1-yr	24-Hr Clear Runoff Volume (cu-ft)	65869.2981	
Fire Factor	Ø	-		
12 10	Hydrogra	oh (Project: Subarea 1A)	-	1
	Hydrogra	oh (Project: Subarea 1A)		
12 10 - 8 - 6 -	Hydrogra	oh (Project: Subarea 1A)		
12 10 (sp) (cts) 6 4 2	Hydrogra	oh (Project: Subarea 1A)		
12 10 - 8 - (sp) Mol 4 -	Hydrograf 400 600	bh (Project: Subarea 1A)	1400	1600

Source: Geosyntec, OLIN, Content modified from Los Angeles County GIS Data Portal, Rainfall Intensity, 2011

puts			Outputs	
oject Name	Project		Modeled (1-yr) Rainfall Depth (in)	1.8395
barea ID	Subarea 1A		Peak Intensity (in/hr)	0.4728
ea (ac)	40		Undeveloped Runoff Coefficient (Cu)	0.5535
w Path Length (ft)	1500		Developed Runoff Coefficient (Cd)	0.5881
w Path Slope (vft/hft)	0.01		Time of Concentration (min)	30
-hr, 50-yr Rainfall Depth (in)	6,50		Clear Peak Flow Rate (cfs)	11.1223
rcent Impervious (0.01-1.0)	0.10		Burned Peak Flow Rate (cfs)	11.1223
Type (2-180)	2	*	24-Hr Clear Runoff Volume (ac-ft)	1.5122
sign Storm Frequency	1-yr	7	24-Hr Clear Runoff Volume (cu-ft)	65869.2981
e Factor	0	~		
12	Hydrog	graph (F	Project: Subarea 1A)	
10 - 8 -	Hydrog	graph (F	Project: Subarea 1A)	
10 - 8 - \$\$	Hydrog	graph (F	Project: Subarea 1A)	
Flow (cfs)	Hydrog	graph (F	Project: Subarea 1A)	
10 - 8 - 6 - 6 - 6 - 4 - 4 -		600	Project: Subarea 1A)	1400 1600

Source: Geosyntec, OLIN, Content modified from Los Angeles County GIS Data Portal, Rainfall Intensity, 2011

Source: http://dpw.lacounty.gov/wrd/publication/Engineering/hydrology/HydroCalc.zip

ngle Subarea Multi-Subarea					
inputs		Outputs			
Project Name	Project	Modeled (1-yr) R	ainfall Depth (in)	1.8395	
Subarea ID	Subarea 1A	Peak Intensity (ii	n/hr)	0.4728	
Area (ac)	40	Undeveloped Ru	noff Coefficient (Cu)	0.5535	
low Path Length (ft)	1500	Developed Runo	ff Coefficient (Cd)	0.5881	
low Path Slope (vft/hft)	0.01	Time of Concent	ration (min)	30	
4-hr, 50-yr Rainfall Depth (in)	6.50	Clear Peak Flow	Rate (cfs)	11.1223	
ercent Impervious (0.01-1.0)	0.10	Burned Peak Flor	w Rate (cfs)	11.1223	
oil Type (2-180)	2	* 24-Hr Clear Rund	off Volume (ac-ft)	1.5122	
esign Storm Frequency	1-yr	* 24-Hr Clear Rund	off Volume (cu-ft)	65869.2981	
Fine Factor	0	v			
12 10	Hydrogra	ph (Project: Suba	rea 1A)	4	
12	Hydrogra	ph (Project: Suba	rea 1A)	-	
12	Hydrogra	ph (Project: Suba	rea 1A)		
12 10 8 (\$t2) MOL	Hydrogra	ph (Project: Suba	rea 1A)		
12	Hydrogra	ph (Project: Suba	rea 1A)		
12 10 8 6	Hydrogra	ph (Project: Suba	rea 1A)		
12 10 8 6 4	Hydrogra	ph (Project: Suba	rea 1A)		
12 10 8 6 4	Hydrogra 400 600			1400	1600

- Fraction of rain that runs off undeveloped surfaces
 - soil type
 - rain intensity
- Fraction of rain that runs off developed surfaces
 - undeveloped surfaces + imperviousness
- Travel time for water from furthest point in subarea

Source: http://dpw.lacounty.gov/wrd/publication/Engineering/hydrology/HydroCalc.zip

gle Subarea Multi-Subarea					
puts			Outputs		
roject Name	Project		Modeled (1-yr) Rainfall Depth (in)	1.8395	
ubarea ID	Subarea 1A		Peak Intensity (in/hr)	0.4728	
rea (ac)	40		Undeveloped Runoff Coefficient (Cu)	0.5535	
ow Path Length (ft)	1500		Developed Runoff Coefficient (Cd)	0.5881	
ow Path Slope (vft/hft)	0.01		Time of Concentration (min)	30	
4-hr, 50-yr Rainfall Depth (in)	6.50		Clear Peak Flow Rate (cfs)	11.1223	
ercent Impervious (0.01-1.0)	0.10		Burned Peak Flow Rate (cfs)	11.1223	
oil Type (2-180)	2	Ŧ	24-Hr Clear Runoff Volume (ac-ft)	1.5122	
esign Storm Frequency	1-yr	Υ.	24-Hr Clear Runoff Volume (cu-ft)	65869.2981	
ire Factor	0	~			
12 10	Hydro	graph (I	Project: Subarea 1A)	-	
12	Hydro	graph (i	Project: Subarea 1A)		
12 10 8	Hydro	graph (Project: Subarea 1A)		
12 10 (stp) wold 6 4	Hydro	graph (Project: Subarea 1A)		
12 10 8 6	Hydro	graph (Project: Subarea 1A)		
12 10 8 6 4 2					
12 10 8 6 4		600	Project: Subarea 1A) 800 1000 1200 te (minutes)	1400 160	00
12 10 8 6 4 2		600	800 1000 1200	1400 160	00

Peak Flow Rates

- Relevant for drainage design and flood risk management
- Will be higher for burned watersheds
 - debris bulking
 - hydro-phobic soil

Volumes

Relevant for LID / BMP design

Source: http://dpw.lacounty.gov/wrd/publication/Engineering/hydrology/HydroCalc.zip

Source: http://dpw.lacounty.gov/wrd/publication/Engineering/hydrology/HydroCalc.zip

Source: Geosyntec, OLIN, Content modified from http://www.ladpw.org/wrd/publication/Engineering/hydrology/rain_depth.zip; http://www.ladpw.org/wrd/publication/Engineering/hydrology/soil_types.zip; Los Angeles County GIS Data Portal, Rainfall Intensity, 2011

South Central LA SLOPE: 1%

24 HR, 50 YR RAINFALL DEPTH: **5.4 in** % IMPERVIOUS: **50%** SOIL TYPE: **6** (Hanford Fine Sandy Loam)

HydroCalc Example Sites

Site Locations

Source: Geosyntec, OLIN

San Gabriel Mountains

SLOPE: **15%** 24 HR, 50 YR RAINFALL DEPTH: **7.8 in** % IMPERVIOUS: **1%** SOIL TYPE: **55** (Upper LA River)

North Hollywood

B

SLOPE: 1% 24 HR, 50 YR RAINFALL DEPTH: 6.8 in % IMPERVIOUS: 60% SOIL TYPE: 15 (Tujunga Fine Sandy Loam)

> Alhambra (w/in W San Gabriel Valley) SLOPE: 5% 24 HR, 50 YR RAINFALL DEPTH: 6.8 in % IMPERVIOUS: 60% SOIL TYPE: 13 (Romona Loam)

Long Beach

SLOPE: 1% 24 HR, 50 YR RAINFALL DEPTH: 5.1 in % IMPERVIOUS: 50% SOIL TYPE: 14 (Romona Sandy Loam)

HYDROCALC

5 mi.

113

WATERSHED CALCULATION

0% Impervious

100% Impervious

This is a volume estimate only, not a peak flow estimate

~27% X

Percentage of rain that falls on impervious surface ~15%

Percentage of rain that LID/BMP captures from a 100-year storm ~4%

Total rainfall captured by LID/BMPs during a 100-year storm

Source: LA County GIS Data Portal NLCD 2011 Impervious Surface.

EXAMPLE LOCATIONS

Section at Glendale Narrows (River Mile 29) -

Section at Firestone Blvd (River Mile 13)

Source: Geosyntec, OLIN

1 50 49 48 47 46 45 44 43 42 41 40

NARROWS ARBOR REACHES

Some sections only manage to the 4-year storm

Reach ^(a)	River Stations	Design ^(b) Discharge ft ³ /s	Design Return Period ^(e) yr	Current Freeboard Criteria ^(c) ft	Existing ^(d) Channel Capacity ft ³ /s	Existing Return Period (e) yr	100-Year Discharge ^(e) ft ³ /s
Reach 1	625+77 to 547+45	40,000	12	3	29,300	4	81,000
Reach 2	546+45 to 510+05	40,000	7	3	25,800	3	88,900
Reach 3a	504+93 to 477+85	40,000	7	3	63,000 ^(f)	32	88,900
Reach 3b	475+68 to 452+58	78,000	51	3	84,000 ^(f)	69	94,600
Reach 4	432+16 to 359+75	78,000	51	3	34,700	4	94,600
Reach 5	358+63 to 271+89	78,000	51	3	34,000	4	94,600
Reach 6a	270+28 to 262+73	78,000	51	2.5	64,500	24	94,600
Reach 6b	257+85 to 144+23	83,700	57	2.5	50,500	11	93,800
Reach 7a	142+91 to 131+22	83,700	57	2.5	135,400 ^(f)	>500	93,800
Reach 7b	128+71 to 86+61	104,000	83	3	83,700	32	109,000
Reach 8	86+07 to 10+31	104,000	83	3	89,600	42	109,000

Notes:

(a) Letters a & b in Reach names denote a change in the river due to a confluence or change in channel dimensions.

(b) Original design discharge for clean prismatic channel.

(c) Freeboard from EM 1110-2-1601; 3 feet for leveed sections and 2.5 feet for trapezoidal entrenched sections.

(d) Existing channel capacity with vegetation, sedimentation and freeboard. The values shown are the minimum within the reach. Discharges above these listed do not necessarily cause damages.

(e) Return periods for Design Discharge and Existing Channel Capacity are based on discharge frequency analysis for the 1992 LACDA Feasibility Study.

(f) In some limited reaches the existing channel capacity is greater than the original design discharge because of more than adequate freeboard.

(g) Refer to Plates 21a through 24b to see the floodplains for various return frequency flows within the study limits.

HH Appendix

61

September 2015

Source: U.S. Army Corps of Engineers, Los Angeles District. Los Angeles River Ecosystem Restoration Project, Volume III, Appendix E (HH Appendix). 2015.

U.S. ARMY ENGINEER DISTRICT

CORPS OF ENGINEERS

116

H&H MODELING TOOLS

	UNIT HYDROLOGY	LARGER		
	HYDROCALC	LSPC	HEC-HMS	MANNIN
NAME	HydroCalc	Loading Simulation Program C++	Hydrologic Engineering Center – Hydrologic Modeling System	Manning's Equ
DEVELOPER	LA County Public Works	LA County Public Works	US Army Corps of Engineers	Robert Manı
DATE	2018	2013	2018	1889
PURPOSE	Modified Rational Method for local scale flood and drainage analyses	Designed for water quality best management practice	Designed explicitly for flood risk management	Uniform and s state analys channels
	HYDROCALC	LSPC	HEC-HMS	MANNING

HYDRAULICS

CHANNELS

NG'S

quation

nning

HEC-RAS

Hydrologic Engineering Center – River Analysis System

> US Army Corps of Engineers

2018

steadysis of els Varying and unsteady analysis of channels and floodplains

G'S

HEC-RAS

LSPC MODEL: LOS ANGELES BASIN STUDY

Updated by Reclamation to include LID/BMP

- Supply effects of climate change and LID studied
- Adjusted impervious land-use areas within all subwatersheds to represent widespread LID implementation
- 47 different climate-change projections

Two Levels of LID

- 0.75 inches of storage, 3-day drawdown
- 1.0 inches of storage, 1.5-day drawdown
- Up to ~48,000 ac-ft/year of additional stormwater conserved in LA River watershed from LID

Source: USBR, LA County, Geosyntec, OLIN

H&H MODELING TOOLS

		HYDROLOGY		
	UNIT HYDROLOGY			
	HYDROCALC	LSPC	HEC-HMS	MANNIN
NAME	HydroCalc	Loading Simulation Program C++	Hydrologic Engineering Center - Hydrologic Modeling System	Manning's Equ
DEVELOPER	LA County Public Works	LA County Public Works	US Army Corps of Engineers	Robert Manı
DATE	2018	2013	2018	1889
PURPOSE	Modified Rational Method for local scale flood and drainage analyses	Designed for water quality best management practice	Designed explicitly for flood risk management	Uniform and s state analys channels
	HYDROCALC	LSPC	HEC-HMS	MANNING

HYDRAULICS

CHANNELS

NG'S

quation

nning

HEC-RAS

Hydrologic Engineering Center – River Analysis System

> US Army Corps of Engineers

2018

steadysis of els Varying and unsteady analysis of channels and floodplains

G'S

HEC-RAS

IMPERVIOUS SURFACE BASELINE

0% Impervious

100% Impervious
Baseline Condition

IMPERVIOUS SURFACE 28% REDUCTION

0% Impervious

100% Impervious

Volume Reduction: 5,186 AF Fraction of 2037 Goals: 100%

Source: LA County GIS Data Portal NLCD 2011 Impervious Surface.

IMPERVIOUS SURFACE 10% REDUCTION

0% Impervious

100% Impervious

Volume Reduction: 1,866 AF Fraction of 2037 Goals: 36%

IMPERVIOUS SURFACE 50% REDUCTION

0% Impervious

100% Impervious

Volume Reduction: 9,331 AF Fraction of 2037 Goals: 180%

mi. Ñ

NARROWS 2-YEAR STORM

Hydrograph: Glendale Narrows, River Mile 29

Source: Geosyntec, OLIN

* flow rates and return periods from Table 17 of HH Appendix E (USACE, 2015)

Baseline Imperviousness

10% Reduction in Imperviousness

28% Reduction in Imperviousness

NARROWS 100-YEAR STORM

Hydrograph: Glendale Narrows, River Mile 29

Source: Geosyntec, OLIN

* flow rates and return periods from Table 17 of HH Appendix E (USACE, 2015)

Baseline Imperviousness

10% Reduction in Imperviousness

28% Reduction in Imperviousness

FIRESTONE 2-YEAR STORM

Hydrograph: Firestone Blvd, River Mile 13

Source: Geosyntec, OLIN

* flow rates and return periods from Table 1 of Part II Hydrology Report (USACE, 1991)

Baseline Imperviousness

10% Reduction in Imperviousness

28% Reduction in Imperviousness

FIRESTONE 100-YEAR STORM

Hydrograph: Firestone Blvd, River Mile 13

Source: Geosyntec, OLIN

* flow rates and return periods from Table 1 of Part II Hydrology Report (USACE, 1991)

Baseline Imperviousness

10% Reduction in Imperviousness

28% Reduction in Imperviousness

REDUCE FLOWS BY ADDING CENTRALIZED STORAGE

FLOOD CONTROL BASINS

Sepulveda: 18,127 AF Hansen: 33,348 AF

Flood Control Basins
Spreading Grounds

- Debris Basins
- Levees
- Storm Drains
- Dams
- Rivers

Source: LA County GIS Portal, Google Earth, Geosyntec

FLOOD CONTROL BASINS

Sepulveda Basin

Source: Google Earth

NARROWS 100-YEAR STORM WITH LARGER BASINS

Hydrograph: Glendale Narrows, River Mile 29

Source: Geosyntec, OLIN

Hydrograph assumes Sepulveda and Hansen Basins are enlarged significantly enough that no outflow occurs.

* flow rates and return periods from Table 17 of HH Appendix E (USACE, 2015)

Baseline

With Larger Basins

FIRESTONE 100-YEAR STORM WITH LARGER BASINS

Hydrograph: Firestone Blvd, River Mile 13

Source: Geosyntec, OLIN

Hydrograph assumes Sepulveda and Hansen Basins are enlarged significantly enough that no outflow occurs.

* flow rates and return periods from Table 1 of Part II Hydrology Report (USACE, 1991)

FLOOD CONTROL BASINS

FLOOD CONTROL BASINS

Sepulveda: 18,127 AF Hansen: 33,348 AF Verdugo and Burbank Location?

Flood Control Basins
Spreading Grounds

- Debris Basins
- Levees
- Storm Drains
- Dams
- Rivers

Source: LA County GIS Portal, Google Earth, Geosyntec

NARROWS 100-YEAR STORM WITH EXTRA BASINS

Hydrograph: Glendale Narrows, River Mile 29

Source: Geosyntec, OLIN

Newly developed Flood Control Basins "modeled" on Burbank and Verdugo Washes, just upstream of confluence with LA River. New basins assume similar operations to Sepulveda. * flow rates and return periods from Table 17 of HH Appendix E (USACE, 2015)

Baseline

With New Basins

FIRESTONE 100-YEAR STORM WITH EXTRA BASINS

Hydrograph: Firestone Blvd, River Mile 13

Source: Geosyntec, OLIN

Newly developed Flood Control Basins "modeled" on Burbank and Verdugo Washes, just upstream of confluence with LA River. New basins assume similar operations to Sepulveda.

* flow rates and return periods from Table 1 of Part II Hydrology Report (USACE, 1991)

INCREASE CHANNEL CAPACITY BY WIDENING THE CHANNEL

Source: OLIN

INCREASE CHANNEL WIDTH

Need to increase by 2 to 3 times

ng	Required
^{//3} /s	1.49 ft ^{1/3} /s
ft ²	9,200 ft ²
ft	15.8 ft
14	0.0044
)	0.06
cfs	95,000 cfs

NARROWS ARBOR REACHES

Some sections only manage to the 4-year storm

Reach ^(a)	River Stations	Design ^(b) Discharge ft ³ /s	Design Return Period ^(e) yr	Current Freeboard Criteria ^(c) ft	Existing ^(d) Channel Capacity ft ³ /s	Existing Return Period (e) yr	100-Year Discharge ^(e) ft ³ /s
Reach 1	625+77 to 547+45	40,000	12	3	29,300	4	81,000
Reach 2	546+45 to 510+05	40,000	7	3	25,800	3	88,900
Reach 3a	504+93 to 477+85	40,000	7	3	63,000 ^(f)	32	88,900
Reach 3b	475+68 to 452+58	78,000	51	3	84,000 ^(f)	69	94,600
Reach 4	432+16 to 359+75	78,000	51	3	34,700	4	94,600
Reach 5	358+63 to 271+89	78,000	51	3	34,000	4	94,600
Reach 6a	270+28 to 262+73	78,000	51	2.5	64,500	24	94,600
Reach 6b	257+85 to 144+23	83,700	57	2.5	50,500	11	93,800
Reach 7a	142+91 to 131+22	83,700	57	2.5	135,400 ^(f)	>500	93,800
Reach 7b	128+71 to 86+61	104,000	83	3	83,700	32	109,000
Reach 8	86+07 to 10+31	104,000	83	3	89,600	42	109,000

Notes:

(a) Letters a & b in Reach names denote a change in the river due to a confluence or change in channel dimensions.

(b) Original design discharge for clean prismatic channel.

(c) Freeboard from EM 1110-2-1601; 3 feet for leveed sections and 2.5 feet for trapezoidal entrenched sections.

(d) Existing channel capacity with vegetation, sedimentation and freeboard. The values shown are the minimum within the reach. Discharges above these listed do not necessarily cause damages.

(e) Return periods for Design Discharge and Existing Channel Capacity are based on discharge frequency analysis for the 1992 LACDA Feasibility Study.

(f) In some limited reaches the existing channel capacity is greater than the original design discharge because of more than adequate freeboard.

(g) Refer to Plates 21a through 24b to see the floodplains for various return frequency flows within the study limits.

HH Appendix

61

September 2015

Source: U.S. Army Corps of Engineers, Los Angeles District. Los Angeles River Ecosystem Restoration Project, Volume III, Appendix E (HH Appendix). 2015.

U.S. ARMY ENGINEER DISTRICT

CORPS OF ENGINEERS

INCREASE CHANNEL WIDTH

Width increase needs to be for extended distances

Source: Los Angles River Ecosystem Restoration Feasibility Study, Appendix E, Hydrology and Hydraulics, US Army Corps of Engineers, Los Angeles District, September 2015

PLATE 28b

INCREASE CHANNEL WIDTH

May require bridge lengthening or re-design and increasing channel width impacts the right-of-way, private and public real estate, transportation, etc.

Source: Geosyntec, OLIN

INCREASE CHANNEL WIDTH

Existing Section: 34,700 cfs capacity

Alternative Section: 95,000 cfs capacity

Source: Geosyntec, OLIN

100-YEAR STORM WITH A WIDER CHANNEL

Hydrograph: Glendale Narrows, River Mile 29

Source: Geosyntec, OLIN

* flow rates and return periods from Table 17 of HH Appendix E (USACE, 2015)

INCREASE CHANNEL CAPACITY BY RAISING LEVEE HEIGHT

Source: OLIN

INCREASE LEVEE HEIGHT / PARAPET WALLS

Existing Section: 34,700 cfs capacity

Source: Geosyntec, OLIN

MANNING'S

100-YEAR STORM WITH HIGHER LEVEES / PARAPET WALLS

Hydrograph: Glendale Narrows, River Mile 29

Source: Geosyntec, OLIN

* flow rates and return periods from Table 17 of HH Appendix E (USACE, 2015)

INCREASE CHANNEL CAPACITY BY ADDING **BYPASS TUNNEL**

Source: OLIN

ADD A BYPASS TUNNEL

Existing Section: 34,700 cfs capacity

Alternative Section: 54,700 cfs capacity

BYPASS TUNNEL

- 40 foot diameter concrete tunnel
- 9 miles long
- 0.6% Slope
- Half full
- 20,000 cfs capacity
- Hydraulic challenges
- \$2.5 Billion (scaled from Delta Tunnels estimate)

TUNNEL EXAMPLES

	TUNNELS	OWNER D	IAMETER (FT	.)
	Delta Tunnels	CA DWR	2' x 40'	
	Pawtucket Tunnel	Narragansett Bay Commission	28′	
_	Euclid Creek Storage Tunnel	Northeast Ohio Regional Sewer District	24′	
_	Anacostia River Tunnel	DC Water and Sewer Authority	23′	
-	Lower & Middle River Des Peres Storage Tunnel	Metropolitan St. Louis Sewer District	30′	

LENGTH (MI)

35	
 2.5	
3.5	
 2.4	
 0	

9

TARP TUNNEL

ALARMS

Chicago

Source: OLIN

100-YEAR STORM WITH BYPASS TUNNEL

Hydrograph: Glendale Narrows, River Mile 29

Source: Geosyntec, OLIN

* flow rates and return periods from Table 17 of HH Appendix E (USACE, 2015)

INCREASE CHANNEL CAPACITY BY REFURBISHING THE CHANNEL

REFURBISHMENT

To increase channel capacity: remove invasives, remove sediment, maintain channel, replace exotic with native grasses.

Existing Section: 34,700 cfs capacity

n = 0.06

Alternative Section: 78,000 cfs capacity n = 0.03

100-YEAR STORM WITH REFURBISHMENT

To increase channel capacity: remove invasives, remove sediment, maintain channel, replace exotic with native grasses.

Hydrograph: Glendale Narrows, River Mile 29

Source: Geosyntec, OLIN

* flow rates and return periods from Table 17 of HH Appendix E (USACE, 2015)

CONCRETE

To increase channel capacity: harden the channel bottom to reduce friction.

Existing Section: 34,700 cfs capacity

n = 0.06

Alternative Section: 120,000 cfs capacity n = 0.016

100-YEAR STORM WITH CONCRETE BOTTOM

To increase channel capacity: Harden the channel bottom to reduce friction.

Hydrograph: Glendale Narrows, River Mile 29

Source: Geosyntec, OLIN

* flow rates and return periods from Table 17 of HH Appendix E (USACE, 2015)

INCREASE CHANNEL CAPACITY BY COMBINING DEAS

REFURBISHMENT + BYPASS TUNNEL

Remove invasives and sediment, maintain channel, optional native grasses, build bypass

Existing Section: 34,700 cfs capacity

Alternative Section: 98,000 cfs capacity

REFURBISHMENT + BYPASS TUNNEL

Remove invasives and sediment, maintain channel, optional native grasses, build bypass

Hydrograph: Glendale Narrows, River Mile 29

Source: Geosyntec, OLIN

* flow rates and return periods from Table 17 of HH Appendix E (USACE, 2015)

Baseline

REFURBISHMENT + BYPASS + EWMP 2037

Remove invasives, remove sediment, maintain channel, optional native grasses, build bypass, 28% impervious surface reduction

Hydrograph: Glendale Narrows, River Mile 29

Source: Geosyntec, OLIN

* flow rates and return periods from Table 17 of HH Appendix E (USACE, 2015)

Baseline

28% Reduction in Imperviousness

INCREASING CAPACITY: 100-YEAR STORM EVENT

HEC-HMS Model: Glendale Narrows (River Mile 29)

Baseline Imperviousness

28% Imperviousness Reduction

Hydrograph: 28% Impervious Reduction 120,000 -100.000 -80.000 -60,000 -51900 cfs 40.000 -20.000 -14 hours

28% Imperviousness Reduction + Refurbishment

28% Imperviousness Reduction + Refurbishment + **Bypass Tunnel**

Note: Width of river represents flow, not floodway width

INCREASING CAPACITY: 100-YEAR STORM EVENT

HEC-HMS Model: Glendale Narrows (River Mile 29)

28% Imperviousness Reduction

Hydrograph: 28% Impervious Reduction 120,000 -100,000 -89700 cfs 80.000 -60,000 -40.000 -20.000 -

28% Imperviousness Reduction + Refurbishment

28% Imperviousness Reduction + Refurbishment + **Bypass Tunnel**

Note: Width of river represents flow, not floodway width

IDEAS TO...

REDUCE FLOWS TO THE CHANNEL

- Low Impact Development
- Best Management Practices
- Distributed Storage
- Increase Sepulveda and Hansen Flood
 - **Control Basins**
- Additional Flood Control Basins

INCREASE **CHANNEL CAPACITY**

- Increase Channel Width
- Increase Levee Height
- Bypass Tunnel
- Sediment Removal/Vegetation Conversion
- Concrete

DISCUSSION AND WRAPUP

Source: OLIN

14

0 & A AND DISCUSSION

PARTICIPANTS

- Iraj Nasseri, Ph.D., P.E. (Los Angeles County Flood Control District)
- Keith Lilley, P.E. (Los Angeles County Flood Control District)
- Nami Tanaka, P.E. (Geosyntec)
- Al Preston, Ph.D., P.E. (Geosyntec)
- Mark Hanna, Ph.D., P.E. (Geosyntec)

WRAP UP

What have we learned?

What needs more study/analysis?

Web Resources:

- County real-time precipitation gages https://dpw.lacounty.gov/wrd/precip/alert_rain/index.cfm
- USACE real-time precipitation gages http://resreg.spl.usace.army.mil/cgi-bin/gMap.cgi?larP
- USACE real-time flow rates

http://resreg.spl.usace.army.mil/cgi-bin/gMap.cgi?larF

• County HydroCalc

http://dpw.lacounty.gov/wrd/publication/Engineering/hydrology/HydroCalc.zip

• USACE HEC-HMS

https://www.hec.usace.army.mil/software/hec-hms/

• USACE HEC-RAS

https://www.hec.usace.army.mil/software/hec-ras/

• Manning's calculator

http://onlinecalc.sdsu.edu/onlinechannel01.php

LARiverMasterPlan.org